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Abstract—Cyber threats are evolving rapidly, making anomaly
detection (AD) in system log data increasingly important for
detection of known and unknown attacks. The configuration
of AD algorithms heavily depends on the data at hand. It
often involves a complex feature selection process and the
determination of parameters such as thresholds or window sizes.
In many cases, configuration requires manual intervention by
domain experts, which limits accessibility and effectiveness of
AD algorithms. This work introduces a Configuration-Engine
(CE), which employs a semi-supervised approach to automate
the configuration process or optimize existing configurations.
The CE utilizes statistical methods to identify log line properties
to recognize meaningful tokens for AD methods to monitor. It
categorizes variables by their characteristics and behavior over
time, then specifies which log parts a detector should observe,
and sets appropriate configuration parameters.

The CE was evaluated using four different detectors. Evalua-
tions on different Apache Access and audit datasets containing
attack traces showed that the CE achieved an average precision of
over 0.94 for Apache and over 0.79 for audit datasets, while main-
taining high recall, competing with the performance of expert-
crafted configurations. The optimization approach was able to
strongly improve the precision of both the CE’s and the experts’
configurations for Apache data in 7 out of 16 cases. Furthermore,
the CE’s configurations were significantly dissimilar to each other
when generated on audit data, highlighting the importance of
automated configuration.

Index Terms—anomaly detection, log data, semi-supervised
learning, feature selection, configuration generation

I. INTRODUCTION

The landscape of cyber threats is constantly evolving, with
novel attack techniques emerging at a rapid pace. Current
reports such as the ENISA Threat Landscape Report 2023
[1] or the Crowdstrike 2024 Global Threat Report [2] name
ransomware as the top cybersecurity threat. The rise of AI-
enabled disinformation and supply chain attacks are also major
concerns, as are persistent DDoS threats, phishing or social
engineering used to gain initial access to systems. Moreover,
attacks are becoming more targeted, with a focus on high-value
sectors like manufacturing and industry. Especially, intrusions
in cloud environments are strongly increasing. The dynamic
nature of these threats presents a serious challenge to or-
ganisations, governments and individuals alike. It necessitates
a continuous state of vigilance and the implementation of
robust security protocols. Once an unauthorised party gains
access or control of a system, they can exfiltrate or manipulate

sensitive data, implant malware that is able to corrupt or
destroy computer infrastructures, and disrupt critical services.
Attacks can occur without detection by system administrators
and the longer an attack persists unnoticed, the greater the
potential damage. Consequently, early detection of potential
intrusions is paramount to minimise risks and harm [2].

The majority of AD methods involve scanning for signatures
such as hashes or IP addresses that correspond to known
malware. As this approach only covers threats that have been
observed and forensically analyzed before, it is not possible
to detect intrusions based on new and unknown techniques
[3]. Consequently, there has been a growing trend towards the
use of data science methods, particularly AD, to address these
challenges. These methods have gained popularity, because of
their ability to detect system states that deviate from normal
system behavior, thereby enabling identification of known and
unknown intrusions [4].

Intrusion detection systems (IDS) learn the normal behavior
of a system based on its log data to uncover possible intrusions
by identifying anomalies. The configuration of AD algorithms
requires customization based on the specific type of log data
generated by the system, which varies depending on the
system’s expected events. This includes adjustment of thresh-
olds, determination of parameters or feature selection. Log
files sometimes contain millions of events, complicating the
extraction of relevant information for effective configuration.
The configuration of the detection tool is a non-trivial and
tedious task and often carried out manually by domain experts.

The configuration determines which detectors the tool
should employ and their corresponding parameter settings.
Selecting the appropriate settings to adapt to the given context
is critical to find anomalies while maintaining a low amount of
false positives (FP). To illustrate this, an IDS with insufficient
sensitivity may fail to detect anomalous instances correspond-
ing to attacks with high accuracy, while one that is overly
sensitive may generate numerous alerts for normal events
along with intrusions. It would be unfeasible for administrators
of large systems to distinguish between intrusions and non-
hostile events [3], [4].

In order to address the above-mentioned challenges, this
work presents the “Configuration-Engine” (CE), a method to
automate the configuration of AD tools. The CE generates
configurations from assumingly anomaly-free data, making
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it a semi-supervised approach. In simple terms, it assesses
what aspects of the data are worth investigating and how to
investigate them and passes this information to the detection
system. The CE consists of a collection of configuration
methods designed to effectively recognize various patterns in
the data that represent some kind of learnable normal behavior.
This approach involves a tradeoff, as each detector requires
its own distinct configuration method rather than relying on
a single model for the entire process. However, once the
method is defined and the hyperparameters are optimized,
it should be universally applicable. The CE was applied on
and evaluated using four different detectors of the so-called
Logdata-Anomaly-Miner, or AMiner, a modular pipeline for
AD on log data [3]. The detectors are described in Sec. IV.

The remainder structures as follows: Section II provides
an overview of the related work. Section III explains the
concept and different steps of the CE. Section IV describes
the detectors for which the configuration methods were ex-
emplarily defined. Section V describes these configuration
methods. Section VI describes how the feedback of the
detectors applied on training data can be used to optimize
configurations. Section VII describes which and how each
configuration method can be meaningfully applied to which
detector. Section VIII discusses the evaluation results. Section
IX describes the limitations of the approach and future work
and Sec. X concludes this paper.

II. RELATED WORK

AD often utilizes distance metrics to assess if instances
deviate from the norm. Typically, detection methods focus on
quantitative features as deriving distance metrics for categor-
ical data is challenging [5]. Inspiration for many methods,
including mathematical definitions and the handling of cate-
gorical variables, comes from [6], particularly the use of co-
occurrence for variable combinations (explained in Sec. V-D).
They propose the Variable Correlation Detector (VCD), a
detector that utilizes selection and filtering steps on categorical
variables to reduce the search space for variable pairs to
detect anomalies. Unlike frequent itemset mining techniques
(association rule mining), the VCD retains infrequent variables
valuable for AD. However, most association rule mining
techniques are ill-suited for AD with log data due to the need
for standardized formats and the volume and variability of log
data in large-scale systems [7], [8].

In [9] Wurzenberger et al. emphasized the variable part
of log lines, proposing an unsupervised approach called the
Variable Type Detector (VTD) to classify log line tokens into
data types such as static, acending, descending, unique and
more. Anomalies are detected by changes in these data types.
The concept of data types is also incorporated into this work.

The methods used here are primarily feature selection meth-
ods as it is critical to select input features for the AD algorithm
with a high sensitivity to anomalies, in order to achieve
high effectiveness [10]. Kloft et al. [10] therefore propose an
automatic feature selection method using a generalized support
vector data description model [11], while Pascoal et al. [12]

suggest a method based on a mutual information metric and
robust statistics.

A prominent anomaly detection approach for log data is
DeepLog [13], a recurrent neural network (RNN) model that
uses Long Short-Term Memory (LSTM) to detect anomalies
in system logs. Other state-of-the-art approaches and similar
to DeepLog are LogAnomaly [14], which also relies on LSTM
RNN, and LogRobust [15], which focuses on robustness
against unstable log data. Recent advances like LogBERT [16]
and LogGPT [17] utilize the semantic capabilities of language
models for anomaly detection.

Most publications assess their approaches using well-known
datasets such as HDFS, BGL, Thunderbird, OpenStack or
Hadoop which are publicly available on LogHub [18], [19].
These datasets became the standard to evaluate AD algo-
rithms in literature, yet most of their anomalies can already
be detected with simple machine learning techniques such
as similarity-based clustering and do not require advanced
techniques for detection [7]. Suitable datasets for evaluating
AD approaches in the context of cyber security are AIT Log
Data Set V1.0 [20] and AIT Log Data Set V2.0 [21], as
their anomalies can often only be detected through complex
analysis of event parameters. These datasets are therefore used
for training, validating and testing the CE’s implementation.
Similarly to [20] and [21] the log data used for evaluation
of [22] includes attacks such as SQL-injection or bruteforce
login. Yet, [20], [21] constitutes a more extensive evaluation
environment as they include several more attack types and
sophisticated attack vectors, such as scans for vulnerabilities
or open ports followed by webshell uploads and privilege
escalation or data exfiltration and many more. The resulting
anomalies are often non-trivial to detect.

In our previous work we proposed an incremental clustering
approach for AD in [22] to enable clustering for online
processing, i.e. processing data streams. We also proposed the
AMiner [3] which is built for efficiently processing log lines
in an online mode. The CE is inherently an offline approach,
but processing log lines in a batch-wise manner would allow
the usage in online AD frameworks. Processing data in real
time requires efficient mechanisms. All standard parsers of the
AMiner therefore utilize tree structures similar to Drain [23]
for efficient parsing.

A very recent advance comes from [24], which also ad-
dresses the configuration problem for AD. They use network
data with attacks that have been previously labeled in an
offline phase that trains a meta-model in a supervised manner.
Since it is supervised, it is able to define optimal configuration
parameters for the AD algorithm. In an online phase, the newly
obtained and presumably attack-free data is then used as input
to the pre-trained meta-model, which outputs approximations
to the optimal configuration parameters. While their approach
has some similarities to the one proposed in this paper as it
also relies on validation data sets for hyperparameter tuning
(Sec. VIII), our approach was designed in a way such that
the configuration methods’ (hyper) parameters are universally
valid once determined.
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III. CONCEPT

The process of the CE is preceding the actual AD, as its
output serves as the configuration of the AD tool, which takes
raw log data and a configuration file as input. The log data
is parsed into variables and the configuration dictates which
detector should be employed, which variables each detector
should analyze and some additional parameters are chosen
(thresholds, window sizes, etc.).

The input of the CE is only the raw log data. The CE uses
the same parser as the AD tool to extract variables and applies
it on the whole dataset, yielding a table structure with rows
corresponding to log lines (or instances) and columns corre-
sponding to variables (or features), to enable data analysis. We
then apply a set of methods on the data that assign variables
to the appropriate detectors and define other parameters. This
information is written into a configuration file that the AD tool
then receives as input. Note, that variables are included when
we speak of configuration parameters. The process of the CE
consists of the following steps:

1) Parse raw log data (the input) into variables.
2) Select or filter variables based on their characteristics for

each detector and compute other relevant parameters.
3) Optimize the initial parameter selection (see Sec. VI).
4) Pass information into a configuration file (the output).

IV. DETECTORS

The configuration methods of the CE were designed for
the detectors implemented by the AMiner [3]. It employs a
collection of different AD algorithms that use techniques such
as text processing, time series analysis, association rule based
approaches and more. The implementation of the AMiner1 is
used for the evaluation of this work.

For the application of the CE, four (out of 27) detectors,
implemented by the AMiner, were chosen. These detectors
were selected due to their diverse detection principles and they
are the most used ones by the experts. Their AD principles
determine which variables are suitable for them to operate
effectively. A brief description of each detector is given below,
including the type of input the detectors receive and the output
they produce [3].

A. NewMatchPathValueDetector (NMPVD)

Anomalies are detected whenever a new and unknown
value is found. Therefore, we want to train the detector with
variables that form a limited set of values.
• Input parameters: individual variables.
• Output: anomalous events.

B. NewMatchPathValueComboDetector (NMPVCD)

This detector is basically an extension of the NMPVD.
Anomalies are detected whenever a new and unknown value
combination for the corresponding variable combination is
found (within the same event). Therefore, one would want

1AMiner GitHub page https://github.com/ait-aecid/logdata-anomaly-miner;
accessed 13-May-2024.

to pass variable combinations to the detector that form a
limited set of value combinations. The number of possible
variable combinations does not scale linearly with the number
of available variables, it is therefore important to consider the
computational cost of this detector’s configuration process.
• Input parameters: variable combinations.
• Output: anomalous events.

C. EntropyDetector (ED)

The ED generates a frequency table for each character pair
of each occurring value of a variable. After analyzing a large
enough sample in the training phase, the relative frequencies
of character occurrences should become stable. This allows for
the detection of anomalies by summing the probabilities of all
character pairs in a new value and flagging it as anomalous
if the combined probability is below threshold φ. We call this
probability critical value P (x). We use symbol φ instead of
θ to point out that this is a threshold which is directly passed
to the AMiner as input and not a threshold used to adjust the
configuration methods [3].

From the above we conclude that the behaviour of the
critical values of variables in the training data is the important
factor to consider.
• Input parameters: individual variables, a lower limit for

critical values φ.
• Output: anomalous events, the critical values of the

anomalous events.

D. ValueRangeDetector (VRD)

The VRD generates ranges for numeric values, detecting
values outside these ranges and extending ranges when it is
learning [3]. Variables with numeric values and limited ranges
are therefore the right choice for this detector.
• Input parameters: individual variables.
• Output: anomalous events.

V. CONFIGURATION METHODS

Since each detector requires different input parameters it has
to be assessed individually for each method which parameter
values are suitable. The first step in finding the right parame-
ters is to assess which variables to choose. This configuration
step can be automated by mapping the variable properties to
the corresponding detection method and thereby classifying
the variables into certain feature sets that suit the correspond-
ing detector. The mapping process can be generalized for all
detectors:

1) Choose detector.
2) Define data characteristic from detection method.
3) Expand characteristic to a measure of stability.

A simple example incorporating these steps is provided by the
NewMatchPathValueDetector (1) of the AMiner which triggers
an alert whenever a new and unknown value of a specified
variable is found in a log line [3]. Consequently, we do not
want to pass certain variables to this detector. Imagine a feature
that has a different value in every occurrence (e.g. random
variables — Sec. V-B). For this detector any learning would
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TABLE I
DEFINITIONS OF MATHEMATICAL EXPRESSIONS.

Expression Description
V the set of all variables (whole dataset)
V a set of variables; V ⊆ V

x, y, z variables of V;x, y, z ∈ V
xi the value of the i-th occurrence of x; xi ∈ x
θ thresholds used in configuration methods

|x| : V → Z total count of occurrences of x

be irrelevant with this kind of values and it would trigger
FP for every occurrence. The corresponding characteristic
is therefore based on “unique occurrence” (3). The suitable
measure of stability hence is the asymptotic decrease of new
unique occurrences of variables over time (4). In other words,
the occurrence of new and unknown values has to stabilize
after some time or some number of events.

The following subsections describe the different configura-
tion methods. To effectively use mathematical formulations in
this context, a set of expressions is introduced in Table I.

A. Static Occurrence

Variables that have the same value in almost every sam-
ple in which they occur are classified as “static” [9] (e.g.
x = [A,A, . . . , A]). In other words, a variable is static if the
number of unique occurrences is equal to 1. The set of static
variables is defined as:

Vstatic =
{
x ∈ V | |{x0, x1, . . . , x|x|}| = 1

}
. (1)

where | · | denotes the cardinality of a set. Note, that a set only
contains unique values by definition.

B. Random Occurrence

Variables are classified as “random” if there are unique
values for most occurrences (e.g. x = [A1, A2, A3, . . . ]). As it
is possible that individual values of a variable x are occurring
randomly, the occurrences of each value of x are counted by
Count(xi) =

∑
j=1 δ(xj , xi) with δ as the Kronecker delta.

If this number is below a certain threshold θ for one of the
values of the variable, it is considered as random:

Vrandom =
{
x ∈ V | ∃xi ∈ x : Count(xi) < θ

}
. (2)

It is meaningful to choose θ > 1. The larger θ the less random
the variable.

C. Stability

The stability of a variable depends on the considered charac-
teristic. We call a variable “stable” regarding that characteristic
if the corresponding curve approaches a constant value within
the training period. Fig. 1 exemplarily shows the behavior of
different values regarding the number of unique occurrences
against the number of occurrences. One can see, the random
variable has a new unique occurrence for every occurrence
(Count(xi) = 1) while the static one only has a single unique
occurrence and is therefore constant. The line between them
shows the behavior of a variable that could be classified as

Fig. 1. Unique occurrences per occurrence of a static (red), stable (green)
and random variable (blue).

stable as no new unique values occur at some point. Conse-
quently, static variables are a subset of the stable variables. For
many detectors there is some kind of stability involved since it
implies some kind of learnable behavior for many detectors.
The curves for static, stable and random occurrence can at
most increase by 1 per occurrence. Fig. 1 therefore presents
the entire spectrum of possible behavior.

To check whether a variable is “stable”, a threshold curve
is defined that acts as an upper limit for the curve f(i),
representing the data characteristic we are interested in. i ∈ Z
is the number of occurrences of a variable x. This threshold
curve is applied to the derivative f ′(i) representing the change
in f(i) per occurrence. For a stable variable, this curve should
therefore approach 0 within the period of the training data.
For the detectors covered in this work, we are actually not
interested in the magnitude of change but whether a change
has occurred or not. Consequently, f ′(i) ∈ R should be an
element of the binary space {0, 1} and we define the boolean
conversion (denoted by the subscripted b), which later allows
us to define relative thresholds in the range [0, 1]:

fb(i) =

{
1 if f(i) 6= 0,

0 otherwise.
(3)

Thus, the function f ′b(i) is 1 if a change in f(i) occurred at
occurrence i or 0 for no change.

Stability is based on the assessment of the mean values of
the segments sm(i) with m = 0, 1, ..., ns − 1. ns being the
number of segments. To be precise, the m-th segment of the
function f ′b(i) is:

sm(i) =

{
f ′b(i) if m

ns
|x| ≤ i < m+1

ns
|x|

0 otherwise.
(4)

The set of stable variables is then defined as:

Vstable =
{
x ∈ V | 1

|sm|

∫
R
sm(i) di ≤ θm ∀m

}
(5)

|sm| is the length of each segment m. |sm| is not uniform if it
is not divisible by ns. Therefore, we define quotient q = |x| :
ns, remainder r = |x| mod ns and:

|sm| =

{
q + 1 if m+ 1 ≤ r,
q if m+ 1 > r.

(6)

If each of the segment means sm(i) is below the thresholds
θm, the corresponding variable is classified as “stable”. The
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thresholds θm represent a discrete threshold curve that serves
as an upper boundary for the change in each segment of f(i).
f ′b(i) ∈ {0, 1} represents this relation as the “relative change
per segment”. This is also convenient for the selection of the
thresholds as we can define them within range [0, 1].

For a stable variable f ′(i) should behave similar to an ex-
ponential decay, i.e., approach 0. It is therefore meaningful to
say θm = e−cm with a constant c determining the magnitude
of decay. In general, any function with similar behavior to an
exponential decay (e.g., 1/x) could be used for θm.

The paragraphs above described stability generically, so
that it can be applied to any function f(i) representing
the behavior of a certain data characteristic. The following
describes the specific types of stability based on different data
characteristics:

1) Stability by Unique Occurrence: The characteristic we
are interested in is the behavior of the number of unique values
over the training period as in Figure 1. Therefore, we take

f(i) = |{x0, x1, x2, . . . , xi}| (7)

and its (discrete) derivative

f ′(i) = f(i)− f(i− 1). (8)

Hereby, we can assess whether the count of unique values
of a variable is stable. For a variable classified as stable by
occurrence, it can be assumed that it has a limited set of
unique values. If the thresholds are reasonably set one can
say that stability by occurrence is a weaker condition than
static occurrence (Sec. V-A) but a stronger condition than non-
random occurrence (Sec. V-B). Note, that the change of the
count of unique values per occurrence can be at most 1 so that
f ′(i) ∈ {0, 1} and therefore f ′(i) = f ′b(i).

2) Stability by Value Range: For the VRD one would want
to pass variables with a limited range of numeric values.
Consequently, we define a measure of stability based on
the minimum-maximum range for variables containing only
numeric values Vnum. We have:

fmin(i) = min({x0, x1, . . . , xi}), (9)
fmax(i) = max({x0, x1, . . . , xi}). (10)

In order to fit the stability relation of Eq. 5, we take the
derivatives and add both functions together to get:

f ′(i) = |f ′min(i)|+ |f ′max(i)|, (11)

where | · | denotes the absolute value. Thus, this yields a
function that is 0 when no change occurred in the minimum
or maximum value of the variable and > 0 otherwise.

3) Example: For some data characteristic, e.g. “unique
occurrence” (see Eq. 7), we have θ = [1, 0.5, 0.1] (previously
chosen by e.g. hyperparameter tuning on a validation set,
hence we know that these thresholds are a valid choice for the
data characteristic at hand). For some variable x we observe a
sequence of events [a, b, a, c, a, a, d, a, a, a, a] (e.g. from log
lines containing something like “type=a”), from which we
subsequently count the number of unique occurrences per

event, from which we obtain f = [1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4].
Consequently, we have f ′ = f ′b = [1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0],
thus |x| = |f ′| = 11 and ns = 3. Therefore, q = 3,
r = 2 and |s| = [4, 4, 3]. The segments themselves are
then s = [[1, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0]] and their mean values
s = [0.75, 0.25, 0.0]. As 0.75 ≤ 1, 0.25 ≤ 0.5, 0.0 ≤ 0.1 are
all true, we classify variable x as stable.

D. Co-occurrence

Two or more variables are co-occurring if they occur in the
same event [6]. Some detectors require variable combinations
as input such as the NMPVCD, which raises an alert whenever
a new combination of values for a specified combination of
variables is found. Since combinations do not scale linearly
we have to take computational cost into account. The number
of combinations is given by the binomial coefficient. For
example, for audit log data it is easily possible to receive
around 350 variables from the parser for all log lines of a
dataset. Note, that a single audit log line contains far less
variables (around 30). Also, this number strongly depends on
the parser itself. For combinations of length 2 there are 61, 075
combinations or for length 3 there are already 7, 145, 775. To
reduce this number it is meaningful to filter certain variables
beforehand based on their type — see Sec. VII.

The combinations are then selected by the assessment of
co-occurrence. A combination c is selected if it occurs at
least θabs times (“abs” for “absolute”). The set of valid
combinations C ⊆ P2(V) is therefore defined as:

C =
{
c ∈ P2(V) | |c| ≥ θabs

}
, (12)

with |c| as the total count of occurrences of combination c and
P2(V) as the power set of V for combinations of 2 variables.
We limit combinations to 2 variables to further decrease the
computational effort for this step. However, a later step allows
combinations of more than 2 variables.

The selection of θabs is not trivial since the number of
co-occurrences can be rather arbitrary for different variable
combinations and datasets. It is therefore meaningful to choose
a relative threshold θrel. Since there are several variables in
a combination that can occur with different frequencies, the
threshold value is defined relative to the total occurrence of
the most frequently occurring variable in a combination:

θabs = max
(
|c| | ∀v ∈ c

)
· θrel, (13)

with v as an arbitrary variable in combination c.
Testing has shown that C often consists of too many

combinations which can overwhelm the AD tool in terms of
computational cost. Especially when running in online mode,
the tool has to be efficient enough to process more events per
time interval than events are occurring. To address this issue,
we apply a simple graph theory method, because combinations
can be represented as nodes connected by edges in a graph. For
instance, the combinations (x, y), (x, z), (y, z), (v, y), (v, w)
can be represented as the graph in Fig. 2.

Next, we merge all connected nodes. For the example at
hand, this leads to the combination (v, w, x, y, z). This is
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Fig. 2. Variable combinations represented as connected nodes in a graph.

possible as for the NMPVCD the set of 2-combinations and the
merged combination are equivalent. For instance, assume the
combinations (x, y), (x, z), (y, z) consisting of the variables x,
y and z. For the NMPVCD these combinations are equivalent
to the combination (x, y, z). Since we want to reduce the total
number of combinations, the latter is preferred.

E. Character Pair Probabilities

The “character pair probability” is the probability of occur-
rence of a character pair in a variables’ value. Character pairs
are consecutive fragments of a character sequence.

This approach is closely tied to the one of the ED (see Sec.
IV-C) as we utilize the same critical value P (x) computed fro
each value of a variable. Further, we compute the mean of
all critical values as P (x) =

∑
i P (xi)/|xi| for each variable

x, resulting in an indicator for how likely the average value
of x is to occur. Variables with a mean critical value below
a certain threshold θCPP are considered too unpredictable as
their character pair probabilities (CPP) are too arbitrary or the
training samples were not enough for them to stabilize. The
other variables are selected as input for the detector:

VCPP =
{
x ∈ V | P (x) ≥ θCPP

}
. (14)

Threshold θCPP can be understood as the “minimum mean
critical value” and has to be chosen through empiric validation.
It has been observed that a rather high value, between 50%
and 80%, yields better results than lower values.

In case of the ED, its configuration expects a specific
threshold parameter φ that decides if a critical value of an
instance is anomalous. φ ∈ [0, 1] is an indicator for how
unlikely a value has to be in order to be detected as an
anomaly. We compute it by taking the minimum of all critical
values P (xi) of selected variable x. From this minimum we
subtract a certain offset δ (in practice, some value between
0.01 to 0.1 is appropriate) to have a buffer between the least
likely values that were still considered as normal behavior, so
that the same values or the ones with similar critical values
are not considered as anomalies after training:

φ(xi) = min
i
P (xi)− δ. (15)

As we take the minimum of all critical values as φ, it will
be strongly affected by potential outliers with very low critical
values within the training data. However, since we consider
this as normal behavior, this trade-off is acceptable. Also, this
corrects the potentially poor selection of a certain variable by
lowering φ to a level where only very unlikely values will
trigger an alert. In practice, it is meaningful to limit φ to
a certain range since it is possible that the minimum critical

value for a certain variable can be arbitrarily low or high within
the range of [0, 1].

VI. PARAMETER OPTIMIZATION

In the following, we investigate an approach to systemat-
ically optimize a configuration by the output obtained from
the AD tool running on the training data. The objective is to
identify false positive sources in the configuration and to adapt
or remove them in order to minimize the occurrence of FPs.
These sources can either be variables, options and thresholds,
or other numeric parameters listed in the configuration of a
detector. This optimization approach is therefore a measure to
reduce the sensitivity of the detector to the training data and
thereby also the likeliness of overfitting. An AD tool running
on anomaly-free data cannot produce true positives (TP). It is
therefore not possible to solve this as a minimization problem.

Each of the detectors requires a set of variables, which
can be obtained by the methods of Sec. V or by plugging
in an already existing configuration. To know how the initial
configuration performs regarding the amount of FP, the detec-
tion tool has to be run with the given data. For the sake of
generalization, a cross-validation technique is used here. This
method splits the data K times based on the number of events,
while maintaining the order of, first, the train and secondly,
the test split. It is also possible to split by time interval but
testing has shown better results when splitting by sample size.

Goldstein and Uchida name two forms of output an AD
tool can have: labels and scores [25]. However, some of
the AMiner’s detectors include additional information in their
alerts (for explanatory reasons) which we make use of. From
the alert report of the AD tool, we can extract the number of
FP, which event caused the alert (a timestamp or line index)
and optionally information of what caused each alert (e.g. the
critical value calculated in the ED — Sec. IV).

Note, that the detected anomalies are considered as point
anomalies. The number of FP and timestamp tn of event
n can be used to determine if an action is necessary for
the corresponding detector instance d. Two conditions are
constructed that assess if an action has to be taken:

1) Check if FP is greater than a certain threshold θ1 for
each detector instance. Since the tool is run K times, we
have an array of FPk for each run k. The data splits are
usually not equally sized. Therefore, we take a weighted
mean [26], denoted by the bar with the subscripted w,
where the weights increase linearly with the size of the
corresponding split:

(FP )w =
( K∑
k=1

k

K
· FPk

)
/
( K∑
k=1

k

K

)
. (16)

The condition is then defined as (FP )w > θ1.
2) Similarly, we limit the amount of FP per time interval

∆t = tn−t0 with t0 and tn as the timestamp of the first
and last alert from the corresponding detector instance.
Therefore, (FP/∆t)w > θ2.
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Since there are several detectors and different ways to adapt
their different parameters and possible combinations, the scope
of this procedure was limited to the adaptation of numeric
thresholds — see Sec. VI-A.

If the corresponding detector expects an input parameter in
the form of a threshold, the value of the threshold is adjusted
so that conditions (FP )w > θ1 and (FP/∆t)w > θ2 are
fulfilled. If the value cannot be adjusted to comply with the
conditions, the corresponding detector instance will be pruned
from the configuration. If the corresponding detector does not
expect a threshold as input parameter (e.g. only variables), they
will also be pruned from the configuration. If the optimization
approach removes every instance from a configuration the
optimized configuration is discarded and the original one is
returned.

A. Threshold optimization

The information of what caused an alert can be used to adapt
the thresholds of detector instances, given that they expect one
(or more) as input parameter. To be precise, we expect that
there is a critical value φ∗ listed in the alert report of the
detection tool that was either too high or too low compared to
the threshold that was specified in the corresponding detector
instance, so that an alarm was triggered.

To adapt the given threshold of a detector instance, the
critical value for each alarm, given that there is one, is
extracted from the alert report. This is done for each of the
K runs of the detection tool. We yield multiple critical values
for a detector instance for each run k. Out of all of these, the
minimum is taken. The new adapted threshold of the detector
instance is therefore:

φnewi = min
k

(min
n
φ∗i,k,n)− δ, (17)

with n as the number of critical values in a single run and
offset δ which has the same functioning as in Sec. V-E.

Even tough this procedure is applicable to a wider range of
different AD algorithms, in this paper it is only relevant for
the ED, as this is the only detector of the selection that returns
such a critical value for its detected anomalies.

VII. META-CONFIGURATION

This section describes how the configuration for each de-
tector is assembled from the methods described in Sec. V. In
case of the selected detectors, the mappings require two types
of operations. For each detector we can
• filter variables from the set of given variables V . Only

the remaining variables V ′ are then passed on to the
subsequent operation.

• select parameters such as variables (or combinations)
from V ′ (or power set P(V ′)) or thresholds, window
sizes, options, etc. that are passed to the detector.

Based on these operations we can define the mappings for
the detectors. Note, that the order of the operations represents
the order in which they are applied. The input for the first
operation is the set of all variables V , from which we can

filter variables that are unnecessary or lead to an unfeasible
computational effort for certain methods before they are passed
to that method. In the following, we list which configuration
methods are applied to which detector. Note, that the parame-
ters named below are the hyperparameters of the configuration
methods of the CE from Sec. V. Their concrete values were
determined via hyperparameter tuning on the validation sets.
• NewMatchPathValueDetector (NMPVD):

– Filter static variables as they blow up the configu-
ration unnecessarily and are trivial to detect.

– select stable variables (by occurrence) because
they contain a limited set of values. Thereby, we
use an exponential decay for θm = e−cm with
m = 0, 1, . . . , 4, c = 1.8 (Sec. V-C).

• NewMatchPathValueComboDetector (NMPVCD):
– Filter random variables as they lead to random

combinations which do not form a limited set of
value combinations (θ = 2; see Sec. V-B).

– Filter static variables as they form trivial combina-
tions (Sec. V-A).

– Filter variables by minimum occurrence to make
sure that only variables with significantly many oc-
currences are combined. Hereby, we determine the
minimum amount of occurrences 0.5% of the total
number of instances of the dataset.

– Select variable combinations based on co-
occurrence as only combinations of variables are
relevant that co-occur at least a certain amount of
times (θrel = 0.1; see Sec. V-D).

• EntropyDetector (ED):
– Filter static variables as their critical values are

also static. A change in a static variable is trivially
detectable by less complex detectors.

– Select parameters by character pair probabilities
as the values of variables are on average rather
likely to occur (if θCPP is reasonably set), and thus
represent a pattern from which the ED is effectively
able to learn a normal behavior (θCPP = 0.7,
φ ∈ [0.0, 0.9], δ = −0.05; see Sec. V-E).

• ValueRangeDetector (VRD):
– Select stable variables (by value range) as they

are numeric and their minimum-maximum ranges are
limited. We use θm = e−cm with m = 0, 1, . . . , 4,
c = 1.8 (Sec. V-C).

VIII. EVALUATION

All results were produced with the same evaluation environ-
ment. The system runs 64-bit Windows 10 with Ubuntu 20.04
via Windows Subsystem for Linux (WSL) and uses an Intel
Core i7-8665U CPU with a base clock speed of 1.90 GHz and
16GB RAM. The implementation of the CE and the expert’s
configurations are available on GitHub2.

2Configuration-Engine GitHub page https://github.com/ait-aecid/aminer-
configuration-engine; accessed 13-November-2024.
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TABLE II
DATASET STATISTICS. “V” OR “T” IN “V/T” INDICATES WHETHER THE

DATASET WAS USED FOR VALIDATION (V) OR TESTING (T).

Name Training
samples

Test
samples

Point
anomalies

Collective
anomalies

V/T

Apache Access datasets
russellmitchell 2884 8300 7696 7 V
fox 9058 413948 410841 16 V
harrison 19604 420790 415376 352 V
mail.onion.com 53004 28959 6429 19 V
shaw 8050 7696 5226 6 T
santos 6752 9032 7794 7 T
wardbeck 32454 9647 5299 9 T
wheeler 7848 433072 431560 53 T
wilson 25130 438743 428116 89 T
mail.spiral.com 65811 34634 7370 30 T
mail.insect.com 118549 50791 6973 30 T
mail.cup.com 115443 33091 6789 28 T

Audit datasets
russellmitchell 1859 457 9 2 V
fox 2078 809 19 3 V
harrison 2454 376 24 3 V
shaw 2608 787 19 3 T
santos 1968 295 19 3 T
wardbeck 2645 274 19 3 T
wheeler 2693 148 14 3 T
wilson 2622 851 22 3 T

Validation and testing was conducted with the Apache
Access and audit datasets given in Tab. II. The datasets that
start with “mail” are from AIT Log Data Set V1.0 [20] while
the rest origins from AIT Log Data Set V2.0 [21]. Each dataset
was divided into a training and a test or validation set. The
training set consists of all instances up to (but excluding) the
first attack and the test set from the first attack to the last entry.
There are no attacks in the training set.

Goldstein and Uchida [25] distinguish three types of anoma-
lies: point, collective and contextual anomalies. For our case,
we define a point anomaly as a single log line and a collective
anomaly, or attack period, as a sequence of log lines that
belong to a specific attack type and are subsequently occurring
with no non-attack log lines in between. Attack periods
separated by non-attack lines are treated as different collective
anomalies or attacks. An anomaly is considered as detected if
at least one log line of the anomaly is detected. In this paper
we do not consider contextual anomalies.

In order to demonstrate the effectiveness of each detector
for both the Configuration-Engine (CE) and the baseline, we
assess the performance with respect to precision, recall and
F1-score of each detector individually. The graphs in Fig. 3
and Fig. 4 show the averaged detection performance of each
detector configured with the CE compared to the performance
of manually created configurations from three different experts
in the domain of cyber security. Each of which has deep
knowledge about the AMiner and is involved in its develop-
ment, thus setting a high level baseline performance of the
manually created configurations. The evaluation metrics shown
in the graphs are computed as the mean of the configurations’
performances on the datasets, with and without the optimiza-
tion. For the optimization, we fixed the number of allowed FP
to θ1 = 10 and the number of FP per minute to θ2 = 0.05 (both
weighted). The number of splits was set to K = 3 (see Sec.
VI). One can see that the performance of the configurations

Fig. 3. Performance of each detector for Apache datasets with and without
optimization.

Fig. 4. Averaged performance of each detector for audit datasets with and
without optimization.

generated by the CE competes with the ones of experts’
configurations. Note, that no numeric variables are given in
audit data, thus the VRD is not applicable there. Especially
for Apache data the optimization exhibits great potential for
increasing the precision at almost no reduction in recall. An
increase in precision is especially favoured over a high recall
score if a collection of multiple detectors is employed for
simultaneous AD, as different detection algorithms typically
detect different anomalies.

For audit data the optimization seems less effective, but does
also not decrease the performance. The lower performance on
audit data is probably caused by the less structured nature
of audit logs. Typically audit log data contains more diverse
events than Apache log data, which makes it more difficult to
apply AD methods effectively. However, some of the experts’
configurations were able to configure specific detectors more
effectively. This means that there are still possible improve-
ments for the CE, potentially in the form of stricter parameter
selection methods or stricter thresholds.

Fig. 5 shows the runtimes of the CE for generating the con-
figurations for the detectors individually averaged over each
dataset. One can see that the runtimes are mostly relatively
low, whereas the configuration method for the NMPVCD
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Fig. 5. Averaged runtimes for each detector for Apache and audit datasets.

exhibits larger execution times for Apache data, because of the
strong scaling of the method and the large number of samples
in some of the Apache datasets.

A. Similarity of Configurations

The previous evaluation approach is solely based on the
evaluation of traditional machine learning metrics, but the
generated configurations themselves might hold additional
information worth investigating. Therefore, assess the similar-
ity of automatically generated configurations to the experts’
manually created ones, and to each other. The configurations
are given as associative arrays, consisting of different keys
and value types. Thus, it is not straightforward to measure
their similarity. A general approach is to assess the similarity
of all present detector-variable pairs as this defines what
features of the data the detector investigates. In case of the
experts’ configurations, it shows which features they consider
important.

A detector-variable pair is given as (da, A) with detector
d and the set of variables A for the configuration a which is
defined as a set of detector-variable pairs:

a = {(da, A)i | i = 1, ..., |a|}, (18)

where | · | denotes the cardinality of a set. For the ED and
the VRD we have |A| = 1 since they take a single variable
as input, but the NMPVCD expects combinations of variables,
which is why we define A as a set of variables and |A| ≥ 1.
The comparison of two configurations a and b is then between
the sets of variables A and B for which da = db holds.
For this comparison we use the Jaccard similarity coefficient
J(A,B) = |A ∩B|/|A ∪B| [27]. The comparison of pairs
that are not from the NMPVCD can only yield J(A,B) = 0
or J(A,B) = 1. If it would not be for the NMPVCD we
would not need the Jaccard index. We define:

J̃(a, b) =

{
J(A,B) if da = db,

0 otherwise
(19)

to impose the condition. The similarity sab ∈ [0, 1] of
configuration a and b is then the sum over all Jaccard indices
where da = db divided by the size of the configuration b:

sab =
1

|b|

|a|∑
i=1

|b|∑
j=1

J̃(ai, bj). (20)

The sums over the modified Jaccard indices J̃ are equivalent to
the sum of every element of a matrix where only the elements
are non-zero where da = db.

Fig. 6. Similarity between the CE and the expert configurations for different
Apache and audit datasets.

Fig. 7. Heatmap of similarities across the configurations generated on different
Apache datasets.

For the graphs in Fig. 6 we use a as the automatically
generated configuration of the CE and b as the expert’s
configuration. Since the formula divides by the size of the
expert configuration b the similarity can be understood as: the
percentage of detector-variable pairs in the expert configura-
tion b that are also given in configuration a.

Fig. 3, Fig. 4, and Fig. 6 reveal that high performance can be
achieved by significantly dissimilar configurations. For audit
the similarity between the CE’s and the experts’ configurations
is almost 0, while their performance strongly differentiates for
each. Meanwhile, the CE’s configurations for the audit datasets
are highly dissimilar compared to each other (Fig. 8). This is
most likely caused by the large number of variables the parser
identifies in the audit log lines.

The heatmaps from Fig. 7 and Fig. 8 show how similar
the configurations from the CE are with each other compared
across different datasets. Note, that the similarities for dataset
santos are 0, because no suitable detector instances could be
generated for it (configuration is empty). As we also get a
satisfying performance for precision and recall across almost
all datasets, it follows that the Apache configurations of the
CE are effectively portable from one dataset to another, due
to their high similarity. This further implies that the important
variables for the detection are mostly the same across the
different Apache datasets (of the same type). At least for
the selection of detectors and datasets, this suggests that it is
possible to define a single suitable configuration for all Apache
datasets — at least in terms of the variables. On the other
hand, the low similarities between audit configurations show
that a specific configuration is necessary for each audit dataset.
This highlights the importance of an automated configuration
process.
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Fig. 8. Heatmap of similarities across the configurations generated on different
audit datasets.

IX. LIMITATIONS AND FUTURE WORK

One area of interest for future work is the expansion
of the range of configuration methods for other detectors.
The existing framework is robust, yet only a small selection
of configuration methods is defined (covering 7 out of 27
detectors of [3]) and the defined methods leave potential
for refinement. While applying the CE directly to other AD
methods is difficult, since a configuration method has to be
defined specifically for distinct methods, it is possible to apply
its concept to every algorithm where a data-driven parameter
selection is required.

As mentioned previously, the performance for audit is worse
than for Apache data, especially for the NMPVCD. Future
work should investigate the impact of different log data types
or non-standardized datasets on the performance more closely.
This will help finding a better universal parameter setting for
the CE across different data types or point out differences in
the requirements to the CE’s settings for different data types.
In general, the less structured and stable the logs are, the more
difficult it is to extract the important variables. For our future
work, we also plan to additionally create a detailed benchmark
against other recent AD solutions to better integrate the CE
into the broader research field.

The CE is limited to offline processing. In order to integrate
the CE into an online AD framework, to adapt AD algorithms
to changes in the data over time, it could be applied on
batches of log lines. It is also limited to the existing parsers
of the AMiner, which are basically predefined log templates
for a set of different data types. Incorporating better parsing
into the AMiner framework would also increase the CE’s
applicability to a wider range of data types and might also
improve the performance, since the downstream tasks are
inherently depending on log parsing [28].

X. CONCLUSION

This work introduces the Configuration-Engine (CE), a
novel approach to automate the configuration of AD algo-
rithms in a semi-supervised manner. The CE analyzes system
log data under the assumption of the data being anomaly-
free. The core of the CE is the classification of variables
into sets based on their character and behavior over time. The
objective is the automation of the tedious configuration pro-
cess that usually requires domain expertise. The configuration
methods based on the characteristics stability, co-occurrence,

and character pair probabilities serve as an extension to their
associated detection algorithms, by transforming the extracted
information from the data into the input parameters of the
associated detectors.

The approach is demonstrated and evaluated with the
AMiner and its detectors, yet the general approach of defining
a configuration method for a detector is applicable to any kind
of AD algorithm. On the other hand, the defined configuration
methods are specifically tailored to the specific detectors of the
AMiner or to those utilizing similar detection techniques. With
the CE, the AMiner detectors proved to achieve satisfying
performance competing with the performance of expert crafted
configurations. Furthermore, the optimization approach was
able to effectively improve the precision in most cases, with
almost no reduction in recall.

Moreover, it is shown that experts’ configurations are con-
siderably dissimilar to the automatically generated configura-
tions of the CE. At the same time, the CE’s configurations
are highly similar to each other across different datasets for
Apache data, indicating the possibility of effective portability
of configurations across different Apache datasets, while the
dissimilarity between audit datasets highlights the importance
of automated configuration.
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