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Abstract—The rapid advancement of Large Language Models
(LLMs) has transformed natural language processing, yet com-
prehensive evaluation methods are necessary to ensure their re-
liability, particularly in Retrieval-Augmented Generation (RAG)
tasks. This study aims to evaluate and compare the performance
of open-source LLMs by introducing a rigorous evaluation
framework. We benchmark 20 LLMs using a combination of
established metrics such as BLEU, ROUGE, BERTScore, along
with and a novel metric, RAGAS. The models were tested across
two distinct datasets to assess their text generation quality.
Our findings reveal that models like nous-hermes-2-solar-10.7b
and mistral-7b-instruct-v0.1 consistently excel in tasks requiring
strict instruction adherence and effective use of large contexts,
while other models show areas for improvement. This research
contributes to the field by offering a comprehensive evaluation
framework that aids in selecting the most suitable LLMs for
complex RAG applications, with implications for future devel-
opments in natural language processing and big data analysis.

Index Terms—Large Language Model, Retrieval-Augmented
Generation, Natural Language Generation Evaluation, LLM
Benchmarking, LLM Evaluation

I. INTRODUCTION

The rapid development of Large Language Models (LLMs)
has led to significant advancements in natural language pro-
cessing (NLP) and generation capabilities [1]–[3]. These mod-
els, trained on vast amounts of text data, have demonstrated
remarkable proficiency in tasks ranging from text completion
and summarization to question-answering and creative writ-
ing [4]. Despite these advancements, there remains a critical
need to evaluate and compare the quality of generation output
from diverse LLMs to ensure their reliability and accuracy in
practical applications [5]–[7].

The importance of robust evaluation mechanisms for LLMs
cannot be overstated. As these models become increasingly
integrated into various domains such as healthcare, finance,
and education, the potential impact of their outputs grows
exponentially [8]. Inaccurate or biased generations could lead
to misinformation, unfair decision-making, or even safety risks
in critical applications [9]. Moreover, the complexity and
opacity of LLMs make it challenging to predict or interpret
their outputs, further emphasizing the need for comprehensive
evaluation techniques [10].

Recent research has highlighted several key areas where
LLM evaluation is crucial. These include assessing factual

accuracy [11], and measuring the model’s ability to understand
and generate context-appropriate responses [12]. Additionally,
as LLMs are often fine-tuned or adapted for specific tasks,
there is a need to evaluate their performance in both general
and domain-specific contexts [13].

This paper aims to address these evaluation needs by sys-
tematically assessing the generation quality of various LLMs
using the RAG approach [14] and selected metrics. RAG is
a technique that combines language model-based generation
with information retrieval to enhance the quality and accu-
racy of text generation. By incorporating relevant information
retrieved from external knowledge sources, RAG models are
able to generate more coherent, factual, and contextually
appropriate outputs compared to standalone language models.
RAG combines the strengths of retrieval-based and generation-
based methods, potentially offering a more robust framework
for evaluating LLM outputs [15]. By incorporating external
knowledge retrieval into the generation process, RAG allows
for a more nuanced evaluation of how LLMs leverage and
integrate information, which is crucial for assessing their real-
world applicability [16].

Our study will employ a diverse set of evaluation metrics,
including BLEU [17], ROUGE [18], and more recent metrics
like BERTScore [19] and Faithfulness [20]. These metrics will
be used to assess various aspects of generation quality.

By conducting this comprehensive evaluation, we aim to
provide valuable insights into the strengths and limitations of
different LLMs, contribute to the ongoing efforts in improving
LLM evaluation methodologies. This research is timely and
crucial as the field of AI continues to evolve rapidly, with
new and more powerful language models being developed at
an unprecedented pace [21].

This work aims to address two fundamental research objec-
tives in the context of leveraging LLMs for RAG applications:

1) Selection of an appropriate open-source LLM for RAG
Applications: One of the critical challenges in the
development of RAG systems is the selection of an
appropriate LLM. This research seeks to explore the
criteria and methodologies that should guide the choice
of an LLM for a specific RAG application. By examining
various factors such as model size, context length, and
performance on specific tasks, this study aims to provide
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a comprehensive framework for selecting an LLM for a
RAG application.

2) Comparative analysis and ranking of LLM performance
in RAG generation: The second objective of this research
is to conduct a detailed comparative analysis of various
LLMs within the context of RAG applications. This
analysis explores how different LLMs perform in gen-
erating high-quality and contextually relevant responses
when augmented with retrieval mechanisms. Further-
more, it involves a systematic ranking of these models
that bases on a set of carefully selected metrics.

This paper makes three key contributions to the evaluation
of LLMs1:

1) Comprehensive LLM Generation Evaluation: Utilizing
the RAGAS framework [20] in combination with con-
ventional NLP evaluation metrics, we systematically
assess LLMs based on Faithfulness [20], Answer Rele-
vance [20], Answer Similarity [20], Answer Correctness
[20], BLEU [17], ROUGE [18], and BERTScore [19],
providing a thorough analysis of their output quality.

2) Benchmarking open-source LLMs: We benchmark a
number of popular open-source LLMs, selected from
Replicate [22], including models like Llama 3-8B [23],
Mixtral 8x7b instruct [24] and Llama 2-7B-Chat [25].
This process identifies reliable and high-performing
models for various applications.

3) Analysis of Metric Correlations: This research an-
alyzes the correlations between evaluation metrics
across datasets, identifying metrics like BERTScore and
ROUGE as consistent, while others, like Faithfulness
and Answer Relevancy, show low correlations. These
findings highlight the importance of selecting metrics
based on the specific task and dataset.

Consequently, this research will contribute to the broader
understanding of LLM performance in terms of text genera-
tion, providing valuable insights for researchers, developers,
and practitioners in the field of NLP and artificial intelligence
(AI). The findings will guide the selection and deployment
of LLMs in various applications, helping to improve the
likelihood that these models produce faithful, relevant, and
accurate responses.

The remainder of this paper is structured as follows: Sect.
2 reviews current evaluation methods for language models,
focusing on the limitations of traditional metrics and the
advantages of using LLMs as automated evaluators. Sect. 3
describes the selection of models, datasets, and evaluation
metrics. Sect. 4 presents performance results, model rankings,
and visual analyses, highlighting key strengths and weaknesses
across different metrics. Sect. 5 summarizes findings and
suggests future research directions.

1https://github.com/dzenanh/Evaluation-and-Comparison-of-Open-Source-
LLMs-Using-Natural-Language-Generation-Quality-Metrics

II. BACKGROUND AND RELATED WORK

Evaluating the performance of large language models
(LLMs) is a complex task, particularly in the field of Natural
Language Processing (NLP), due to the intricate nature of
human language. Traditional metrics like BLEU and ROUGE,
which are the most frequently reported NLP performance met-
rics [26], originally designed for translation and summarization
tasks, have shown limited applicability and low correlation
with human judgment across broader NLP tasks [26]. To
address these limitations, recent approaches have explored
using LLMs as evaluators, a method known as ”LLM-as-a-
judge.”

The ”LLM-as-a-judge” approach offers significant advan-
tages in scalability and cost-effectiveness. Automated evalu-
ations using strong LLMs like GPT-4 reduce the need for
human involvement, allowing for the efficient handling of
large datasets. This method also achieves high agreement
with human judgments, matching human-level concordance in
many cases, thus serving as a reliable and objective substitute
for human judges [27]. Additionally, LLM judges provide
detailed feedback and can mitigate human biases, enhancing
the transparency and objectivity of evaluations. These evalua-
tions, conducted with LLM judges, are reproducible, assuming
deterministic LLM behavior, thus providing consistent and
reliable results.

This method is particularly valuable in evaluating open-
ended tasks, where traditional benchmarks often fall short.
The ”LLM-as-a-judge” approach complements existing bench-
marks by focusing on human-centric evaluation metrics, ensur-
ing a comprehensive assessment of LLM capabilities [27]. For
instance, the RAGAs framework [20] integrates this approach
within RAG systems, automating the evaluation of generated
content based on predefined criteria.

Recent studies further emphasize the challenges in eval-
uating RAG systems. Chen et al. [28] developed the RAG
Benchmark (RGB) to evaluate four key RAG capabilities:
noise resilience, rejection of irrelevant information, integration
of retrieved knowledge, and robustness against counterfactu-
als. Their findings highlight significant limitations in current
LLMs, underscoring the need for continued research.

Yu et al. [29] propose a Unified Evaluation Process for
RAG, emphasizing the need for benchmarks that balance
retrieval accuracy and generative quality. Their survey iden-
tifies gaps in current methods, particularly the inadequacy of
existing metrics for evaluating faithfulness and accuracy in
generation, and the need for more diverse and comprehensive
datasets that reflect real-world scenarios—both of which are
addressed in this research. The paper suggests future research
directions to enhance the effectiveness of RAG system evalu-
ations.

Similarly, Friel et al. [30] introduced RAGBench, a large-
scale benchmark designed to address evaluation challenges in
RAG systems across various industry domains. Their find-
ings reveal that evaluations of relevance, faithfulness, and
correctness conducted using LLMs often yield less accurate
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assessments compared to those conducted using fine-tuned
models like DeBERTa, highlighting the need for more reliable
evaluation methods.

Incorporating these insights, the integration of ”LLM-as-
a-judge” within RAG frameworks not only enhances the
scalability and reliability of evaluations but also ensures that
LLM-generated content aligns with human preferences, mak-
ing these models more practical and effective in real-world
scenarios.

III. METHODOLOGY

This section explains how we selected and evaluated the
language models used in our study. We start by describing
the criteria for choosing models from the Replicate [22]
platform, ensuring a diverse and cost-effective selection. Next,
we outline the data and settings used to test these models,
making sure the evaluation is fair and consistent.

A. LLM Choosing Criteria

Open-source LLMs were chosen from the cloud-based
platform Replicate, a startup that leverages cloud technol-
ogy to run machine learning models. Replicate stands out
for its simplicity and developer-friendly approach, offering
a wide range of pre-trained models with easy customization
and deployment, all within a flexible pay-per-use pricing
model. Its strong support for open-source models, built-in
version control, and straightforward API integration make it
an attractive choice for developers and researchers who want
to experiment with or deploy AI models without dealing
with complex infrastructure management. We selected and
utilized all 40 recommended open-source LLMs available on
Replicate2, ranging from 130 million to 70 billion parameters,
ensuring a robust and comprehensive set for evaluation.

Alternative approaches to using Replicate include:
1) Running models from Hugging Face3 locally: This

option involves downloading and running the models
directly on your own hardware. While it offers full
control over the models and their configurations, it
requires a powerful computer with substantial processing
power and memory, especially for handling large models
with up to 70 billion parameters. This setup can be chal-
lenging for those without access to high-end hardware.

2) Running models from Hugging Face on major cloud
providers (AWS, Azure, GCP): This approach leverages
the scalability and flexibility of cloud computing to run
models. However, it requires specialized expertise to
set up and manage the cloud infrastructure effectively.
Tasks such as configuring virtual machines, managing
storage, and optimizing costs can be complex and time-
consuming, making this option more suitable for teams
with cloud experience.

After selecting the LLMs from Replicate, the models were
further refined by checking if they were evaluated on six

2https://replicate.com/collections/language-models
3https://huggingface.co/LLMs

key benchmarks (IFEval [32], BBH [34], MATH [35], GPQA
[36], MuSR [37], and MMLU-PRO [38]) using the Eleuther
AI Language Model Evaluation Harness [31]. This unified
framework tests generative language models on a wide range
of evaluation tasks, ensuring that the selected models have
undergone rigorous testing across diverse scenarios. Only the
models that were tested with all six benchmarks were selected,
which was crucial to ensure that the final set of models not
only met the initial selection criteria but also demonstrated
strong performance across important evaluation benchmarks.
This sub-selection process led to a final set of 20 Open-Source
LLM (Table I) models for evaluation.

The selected LLMs vary widely in their characteristics,
offering a diverse set of options in terms of model size, context
handling capabilities, and performance across key benchmarks.
The models range from 2 billion to 70 billion parameters, with
context sizes spanning from 8,000 to 32,000 tokens. Perfor-
mance on benchmarks such as IFEval, BBH, and MMLU-PRO
highlights the models’ varying strengths, with some excelling
in specific tasks like mathematical reasoning (MATH Level
5) or factual correctness (GPQA). This diversity enables a
comprehensive evaluation across different NLP tasks, ensuring
that the chosen models provide robust and reliable insights for
a broad range of applications.

We operate under the assumption that if an LLM is trained
or fine-tuned on a specific type of dataset, it will deliver
comparably good results when tested on that same type of
dataset. For example, if a model is trained with a mathematics
dataset, it is expected to perform better on a mathematics test
compared to models that were neither trained nor fine-tuned
on such datasets. With this in mind, we considered the six key
benchmarks from the Eleuther AI Language Model Evaluation
Harness [31] as the defining characteristics or properties of an
LLM.

1) IFEval [32] is a dataset specifically created to assess a
model’s capability to adhere to clear instructions, such
as ”incorporate keyword x” or ”utilize format y.” The
primary emphasis is on the model’s compliance with
formatting directives rather than the substance of the
output, enabling the application of precise and stringent
evaluation metrics [33].

2) BBH (Big Bench Hard) [34] consists of 23 tasks from
the BigBench dataset, designed to evaluate language
models using objective metrics. These tasks include
multistep arithmetic, algorithmic reasoning, language
comprehension, and general knowledge. Performance on
BBH aligns closely with human preferences, providing
valuable insights into model capabilities [33].

3) MATH [35] is a collection of high-school level com-
petition problems compiled from various sources and
consistently formatted using LaTeX for equations and
Asymptote for figures. The generated content must ad-
here to a precise output format. Only the most challeng-
ing level 5 questions from MATH were retained, referred
to as MATH Lvl 5 [33].

4) GPQA [36] (Graduate-Level Google-Proof Q&A Bench-
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mark) is a knowledge dataset with questions created by
PhD-level experts in biology, physics, and chemistry.
Designed to be difficult for non-experts, the dataset
has undergone rigorous validation to ensure complexity
and accuracy. Access to GPQA is tightly controlled to
prevent data contamination, and plain text examples are
not shared in adherence to the authors’ guidelines [33].

5) MuSR [37] (Multistep Soft Reasoning) is a novel dataset
composed of algorithmically generated problems, each
approximately 1,000 words long. The problems encom-
pass murder mysteries, object placement challenges, and
team allocation optimizations. To solve these problems,
models must combine reasoning with the ability to parse
long-range context. Most models perform only slightly
better than random chance on this dataset [33].

6) MMLU-PRO [38] (Massive Multitask Language Un-
derstanding - Professional) is an enhanced version of
the MMLU dataset, traditionally used for multiple-
choice knowledge assessments. Recent studies high-
lighted problems in the original MMLU, such as noisy
data with some unanswerable questions and a reduction
in difficulty due to advancements in model capabilities
and increased data contamination. MMLU-Pro addresses
these concerns by providing 10 answer choices instead
of 4, incorporating more reasoning-based questions, and
undergoing expert review to minimize noise. Conse-
quently, MMLU-Pro is of superior quality and presents a
greater challenge compared to the original dataset [33].

In all of these evaluations, a higher score indicates better
performance, with scores ranging from 0 to 100.

B. Data and Settings

In this work, two Question-and-Answer datasets are utilized,
each consisting of 50 pairs of questions and answers.

The first dataset (DSA), as described in [39], originally com-
prised 107 question-answer pairs generated using ChatGPT-
4. The authors ensured that the generation process followed
specific criteria to maintain technical precision, provide a
sufficient challenge, and align with potential user inquiries
directed towards a RAG system. To ensure that the evaluation
data accurately reflect the performance of RAG techniques
in real-world scenarios, each Q&A pair underwent human
inspection and review to validate its relevance and accuracy.
These pairs were derived from a subset of 13 papers included
in a dataset containing 423 selected research papers focused on
the topics of AI and LLMs, drawn from arXiv [40]. From this
dataset, 50 Question-Answer pairs were randomly selected.

The PDF documents were processed using Langchain’s
file-loader4, which, by default, chunks the documents by
page. These chunks were then converted into embedding
vectors using SBERT’s ”multi-qa-MiniLM-L6-cos-v1” model
[41] during the process of loading the documents into the
Chroma vector database.

4https://sj-langchain.readthedocs.io/en/latest/document loaders/langchain.
document loaders.pdf.PyPDFDirectoryLoader.html

template = """Answer the question
based only on the following context:
{context}

Question: {question} """

Fig. 1. RAG Prompt Template.

For the second dataset (DSB), a literature search was
conducted using Langchain’s document-loader5, an ArXiv6

API wrapper. The query ”security penetration testing” was
used, resulting in 200 documents being loaded. This topic was
intentionally chosen to differ from the AI-related first dataset,
ensuring a broader evaluation scope. To ensure that none of
the LLMs used in this work were trained on the selected
documents, papers released after April 18, 2024 (the release
date of the Llama 2 models), were chosen. This filtering
resulted in a final selection of 11 papers. From these, a Q&A
dataset with 60 items was generated using state-of-the-art
RAGAs Q&A generation capabilities, with GPT-4o as the
LLM for generation. The final 50 Q&A pairs were randomly
selected.

The textual data from these documents was divided into
chunks of size 2000 characters and an overlap of 200. The
applied separators have been ”\n\n”, ”\n”, ”(?<=\.)”, and
” ”. . The resulting document chunks were then converted
into embeddings and stored in the Chroma vector database.
The prompt template (Fig. 1) is formatted as follows:

The context variable is constructed by concatenating the
content of the 2 documents most similar to the question. The
contents of these documents are joined together with ”\n\n”
between each page.

GPT-4o was used as the ”LLM-as-a-Judge” in this experi-
ment. The LLM was initialized with temperature 0, which sets
the randomness of the predictions to a minimum, and top p 1,
which ensures that the model considers the entire probability
distribution for generating the next token. The models under
test were initialized with the following parameters: tempera-
ture 0.1, max length 500, and top p 1.

C. Evaluation Metrics

The evaluation framework used in this research consists
of RAGAs, BLEU, ROUGE, and BERTScore. We selected
these metrics because they collectively provide a balanced
assessment of both surface-level accuracy (BLEU, ROUGE)
and deeper semantic alignment (BERTScore), while RAGAs
specifically evaluates the faithfulness, relevance, and cor-
rectness of generated answers in RAG tasks. These metrics
were chosen for their proven effectiveness in capturing both
traditional and advanced aspects of text quality, avoiding
others due to their narrower focus or lower relevance to the
comprehensive evaluation needed for this study.

5https://python.langchain.com/v0.2/docs/integrations/document loaders/
arxiv/

6arxiv.org
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TABLE I
COMPARISON OF DIFFERENT MODELS ACROSS VARIOUS EVALUATION METRICS.

Model # Parameter(billions) Context Size (thousands) IFEval BBH MATH Lvl 5 GPQA MUSR MMLU-PRO
gemma-2b 2.0 8.0 30.88 8.25 2.72 0.67 7.56 4.06
gemma-2b-it 2.0 8.0 26.90 5.21 0.45 3.80 3.03 3.92
gemma-7b 7.0 8.0 26.59 21.12 6.42 4.92 10.98 21.64
gemma-7b-it 7.0 8.0 38.68 11.94 1.59 4.59 12.53 7.72
llama-2-13b-chat 13.0 4.0 45.62 4.91 0.98 1.10 3.56 10.26
llama-2-70b-chat 70.0 4.0 49.58 4.61 0.91 0.56 4.17 15.92
llama-2-7b-chat 7.0 4.0 39.65 4.49 0.64 0.56 3.48 7.52
meta-llama-3-70b 70.0 8.0 48.71 16.54 19.69 16.01 21.27 41.21
meta-llama-3-70b-instruct 70.0 8.0 80.99 50.19 23.34 4.92 10.92 46.74
meta-llama-3-8b 8.0 8.0 14.55 24.50 3.25 7.38 6.24 24.55
meta-llama-3-8b-instruct 8.0 8.0 28.24 28.24 8.69 7.61 6.60 29.60
mistral-7b-instruct-v0.1 7.0 8.0 45.02 13.79 1.51 0.00 5.77 15.34
mistral-7b-instruct-v0.2 7.0 8.0 52.94 22.91 6.04 3.47 7.61 19.08
mistral-7b-v0.1 7.0 8.0 38.26 22.02 2.49 5.59 10.68 22.36
mixtral-8x7b-instruct-v0.1 56.0 32.0 53.45 9.71 12.11 3.60 11.14 19.86
nous-hermes-2-solar-10.7b 10.7 8.0 52.79 19.54 5.21 5.82 13.82 27.31
qwen1.5-14b 14.0 32.0 29.05 30.06 16.47 5.93 10.46 30.06
qwen1.5-7b 7.0 32.0 26.84 23.08 4.46 6.49 9.16 21.29
yi-34b-chat 34.0 4.0 46.99 37.62 4.31 11.74 8.36 34.37
yi-6b 6.0 4.0 28.93 19.41 1.51 2.57 7.04 22.12
yi-6b-chat 6.0 8.0 33.95 17.00 0.68 5.93 3.57 22.92

For the generation component in RAG, RAGAs includes
a Faithfulness metric (1) to measure hallucinations and an
Answer Relevancy metric (2) to assess the relevance of the
answers to the questions. BLEU and ROUGE are also utilized
to provide additional conventional NLP performance metrics.

Faithfulness (F) evaluates how factually consistent the
generated answer is with the provided context. It is derived
from both the answer and the retrieved context, and the results
are scaled to a range of (0, 1), where higher values indicate
better performance [42].

The faithfulness of the answer as(q) to the context c(q),
where q denotes the question, as the condition where the
statements made in the answer can be logically derived from
the context. To measure faithfulness, an LLM is first used to
extract a set of statements, S(as(q)), from the answer. This
process simplifies longer sentences into shorter, more precise
assertions [20].

In other words, an answer is considered faithful if every
claim made within it can be substantiated by the context.
To assess this, a list of claims from the generated answer is
compiled. Each claim is then verified against the provided
context to determine whether it can be logically derived from
it. This involves evaluating whether the claim is a direct or
reasonably inferred conclusion from the information in the
context, taking into account both explicit details and implicit
connections that are clearly supported by the context [42].

Faithfulness score [42], F , is defined in equation (1):

F =
|V |
|S|

, (1)

where, |V | is the number of statements that were supported
according to the LLM and |S| is the total number of state-
ments.

The metric Answer Relevance (AR) (2) measures the ap-
propriateness of the generated answer to the presented prompt.
Answers that are partial or include extraneous information

receive lower scores. This metric is calculated based on the
question, the context, and the answer, and is defined as the
mean cosine similarity between the original question and a
number of artificial questions, which are reverse-engineered
based on the answer [42].

AR =
1

N

N∑
i=1

cos(EGi
, EO), (2)

where, EGi
represents the embedding of the generated

question i, EO denotes the embedding of the original question,
and N refers to the number of generated questions, which is
set to 3 by default [42].

An answer is considered relevant when it directly and ap-
propriately responds to the original question. The assessment
of relevance does not focus on factual accuracy but rather
penalizes answers that are incomplete or contain unnecessary
details. To compute the relevance score, the LLM is prompted
multiple times to generate suitable questions for the given
answer. The mean cosine similarity between these generated
questions and the original question is then measured. The
rationale is that if the generated answer accurately addresses
the initial question, the LLM should produce questions from
the answer that closely match the original question [42].

Answer Similarity (AS) metric is determined through the
following three-step process:

1) Convert the ground truth answer into a vector using the
designated embedding model.

2) Transform the generated answer into a vector using the
same embedding model.

3) Calculate the cosine similarity between these two vec-
tors.

Mathematically, the metric can be represented by the equa-
tion (3):

AS = cos(Agt, AG), (3)
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where, Agt is the ground truth answer converted to embed-
ding, and AG is the embedding of the generated answer [42].

The notion of AS involves evaluating how closely the
generated answer aligns semantically with the ground truth.
This assessment results in a score ranging from 0 to 1, where
a higher score indicates a closer match between the generated
answer and the ground truth. Assessing semantic similarity
provides insights into the quality of the generated response.
This evaluation, along with the AR, employs an embedding-
based approach to determine the semantic similarity score [42].

Answer Correctness (AC) involves evaluating the accuracy
of the generated answer in relation to the ground truth. This
assessment produces scores ranging from 0 to 1, where a
higher score signifies a closer match between the generated
answer and the ground truth, indicating greater correctness.

AC includes two key components: semantic similarity and
factual similarity between the generated answer and the ground
truth. These components are integrated using a weighted
scheme to determine the answer correctness score.

AC is determined by combining factual accuracy with the
semantic similarity between the provided answer and the
ground truth. Factual accuracy measures the factual agreement
between the generated answer and the ground truth. This
measurement is based on the following concepts:

• TP (True Positive): Facts or statements that are found in
both the ground truth and the generated answer.

• FP (False Positive): Facts or statements that appear in the
generated answer but are absent in the ground truth.

• FN (False Negative): Facts or statements that are present
in the ground truth but missing from the generated
answer.

In equation (4), we now employ the F1 score formula to
measure correctness.

F1 Score =
|TP |

(|TP |+ 0.5 · (|FP |+ |FN |))
(4)

The RAGAS Score in this work is calculated using the
equally weighted sum of its individual components (F, AR,
AS and AC), which assess the generation components of the
RAG system.

RAGAS =
1

4
(F +AR+AS +AC) , (5)

where, F is the Faithfulness score, AR is the Answer Rele-
vance score, AS is the Answer Similarity score, and AC is
the Answer Correctness score.

The BLEU (Bilingual Evaluation Understudy) is the most
frequently used NLP-specific metric in research [26]. It eval-
uates the similarity between a generated sentence and a
reference sentence. The BLEU score ranges from 0, indicating
a complete mismatch, to 1, indicating a perfect match. This
metric was developed specifically for the evaluation of au-
tomated machine translations. Moreover, it correlates highly
with human evaluation [17]. The calculation of the BLEU

score (7) also requires the inclusion of a brevity penalty (BP)
(6).

BP =

{
1 if c > r

e(1−r/c) if c ≤ r
, (6)

where, r is the reference corpus length, and c is the translation
length.

Then,

BLEU = BP · e
∑N

n=1 wn log pn , (7)

where, wn are the weights assigned to each n-gram precision,
summing to one, and pn is the n-gram precision.

Achieving a perfect score of 1 in translation evaluations is
rare, unless the translation exactly matches the reference. As a
result, even human translators are unlikely to achieve a score
of 1 [17]. In this research, the BLEU score uses 4-grams with
equally assigned weights, i.e., 25% for each n-gram.

The ROUGE (Recall-Oriented Understudy for Gisting
Evaluation) metric (8) is a commonly used tool for evaluating
the quality of machine-generated text, such as summaries,
translations, or other forms of text generation. ROUGE works
by comparing the words or sequences of words in the gen-
erated text to those in a reference or ”gold standard” text. It
measures how much of the reference text’s content is captured
by the generated text, focusing on recall, which means it looks
at how much of the important information from the reference
is included in the output [18]. ROUGE-L is often chosen for
evaluating machine-generated text because it focuses on the
Longest Common Subsequence (LCS), which is what the ”L”
stands for, between the generated text and the reference text.
This is particularly useful in tasks like summarization and
translation, where the structure and order of information are
important. ROUGE-L considers both precision and recall, but
it places emphasis on recall, which means it captures how
much of the important information from the reference text is
included in the output [43].

ROUGE-L = Fβ =
(1 + β2) · RLCS · PLCS

RLCS + β2 · PLCS
, (8)

where, RLCS = LCS(X,Y )
|Y | and PLCS = LCS(X,Y )

|X| .
Here, LCS(X,Y ) is the length of the longest common

subsequence between the reference text Y and the generated
text X , RLCS is the recall of the LCS, and PLCS is the
precision of the LCS. β is a parameter that determines the
relative importance of recall and precision (typically, β = 1,
meaning equal importance is given to both).

BERTScore, introduced by Zhang et al. (2020) [19] is a text
generation evaluation metric that leverages pre-trained BERT
embeddings to measure the similarity between generated text
and reference text. Unlike conventional metrics that rely on
exact n-gram matching, BERTScore uses contextualized word
embeddings to capture semantic meaning, allowing for a more
nuanced evaluation. It computes precision (9), recall (10), and
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F1-score (11) by comparing the embeddings of the candidate
and reference sentences, making it particularly effective for
tasks like summarization and translation [19].

Precision =
1

|C|
∑
x∈C

max
y∈R

cos(x, y), (9)

where, C is the set of candidate tokens, R is the set of
reference tokens, and cos(x, y) is the cosine similarity between
the BERT embeddings of token x from the candidate and token
y from the reference.

Recall =
1

|R|
∑
y∈R

max
x∈C

cos(y, x) (10)

where R is the set of reference tokens, C is the set of candidate
tokens, and cos(y, x) is the cosine similarity between the
BERT embeddings of token y from the reference and token x
from the candidate.

F1 =
2 · Precision · Recall
Precision + Recall

, (11)

where, Precision (9), and Recall (10) are calculated as
shown above.

IV. EVALUATION

In this section, we evaluate the performance of selected
LLMs across multiple datasets. The evaluation includes ana-
lyzing metric correlations, ranking the LLMs, and comparing
the top and bottom performers. Each step is detailed in the
following subsections.

A. Correlation Analysis of Evaluation Metrics

In the first step, we analyzed the correlations between
various evaluation metrics across two datasets (Fig. 2), DSA
and DSB introduced in Sect. III-B, to assess the consis-
tency and reliability of these metrics in evaluating machine-
generated text. The correlation analysis revealed several strong
relationships, indicating that the metrics are highly consistent
both across datasets and within individual datasets.

Faithfulness exhibited a very strong positive correlation
between DSA and DSB (r = 0.91), suggesting that the faith-
fulness scores are remarkably stable across different datasets.
This consistency indicates that the metric is reliable for
evaluating the faithfulness of generated text, regardless of the
dataset used.

Answer Correctness also showed a strong correlation
between DSA and DSB (r = 0.87), which implies that the
correctness of answers is consistently assessed across different
datasets. Additionally, there is a high correlation between
answer correctness and answer similarity within both DSA
(r = 0.75) and DSB (r = 0.86). This suggests that when an
answer is deemed correct, it is also likely to be similar to the
reference answers, highlighting a close relationship between
these two evaluation dimensions.
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Fig. 2. Correlation across all metrics for the two datasets DSA and DSB.

Answer Similarity maintained a strong positive correlation
between DSA and DSB (r = 0.87), further confirming the
consistency of this metric across datasets. This consistency
is crucial for ensuring that the similarity between generated
and reference answers is evaluated uniformly across different
contexts.

The BLEU, ROUGE, and BERTScore metrics, which are
commonly used for evaluating the quality of text generation,
also exhibited strong correlations across datasets. BLEU scores
between DSA and DSB showed a correlation of r = 0.85,
while ROUGE scores were even more consistent with a
correlation of r = 0.96. BERTScore, which leverages contex-
tual embeddings, demonstrated the highest consistency across
datasets with a correlation of r = 0.97. Moreover, within DSB,
ROUGE and BERTScore were highly correlated (r = 0.94),
indicating that these two metrics often agree on the quality of
the generated text.

These strong correlations suggest that the evaluated metrics
are robust and reliable indicators of text generation quality,
providing consistent results across different datasets.

However, not all metrics showed strong correlations across
the datasets, highlighting potential sensitivities to specific
dataset characteristics. For instance, the correlation between
Faithfulness and Answer Relevancy in DSA was notably low
(r = 0.22), indicating that a model’s ability to produce factu-
ally accurate content does not necessarily align with its ability
to generate relevant responses. This trend is consistent in
DSB, where the correlation between Faithfulness and Answer
Relevancy remains low (r = 0.17). These low correlations
suggest that models may excel in ensuring factual accuracy
while struggling to maintain relevance in their responses, or
vice versa.

Additionally, Answer Relevancy itself showed gener-
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TABLE II
LLM PERFORMANCE RANKINGS ACROSS METRICS - DSA.

Model BLEU ROUGE BERT RAGAS Average

nous-hermes-2-solar-10.7b 0.038 (1) 0.231 (2) 0.872 (5) 0.677 (1) 2.25
qwen1.5-14b 0.036 (2) 0.219 (4) 0.875 (1) 0.646 (3) 2.50
mistral-7b-instruct-v0.1 0.032 (4) 0.246 (1) 0.873 (2) 0.639 (5) 3.00
qwen1.5-7b 0.032 (4) 0.216 (6) 0.873 (2) 0.649 (2) 3.50
gemma-2b-it 0.034 (3) 0.218 (5) 0.873 (2) 0.601 (8) 4.50
mixtral-8x7b-instruct-v0.1 0.031 (6) 0.221 (3) 0.866 (6) 0.640 (4) 4.75
meta-llama-3-70b-instruct 0.030 (7) 0.207 (8) 0.865 (7) 0.629 (6) 7.00
mistral-7b-instruct-v0.2 0.023 (9) 0.216 (6) 0.862 (8) 0.560 (10) 8.25
llama-2-70b-chat 0.026 (8) 0.203 (10) 0.859 (9) 0.610 (7) 8.50
llama-2-13b-chat 0.016 (10) 0.173 (16) 0.847 (11) 0.590 (9) 11.50
llama-2-7b-chat 0.016 (10) 0.178 (14) 0.849 (10) 0.525 (13) 11.75
gemma-7b 0.013 (12) 0.205 (9) 0.842 (12) 0.481 (17) 12.50
gemma-2b 0.011 (13) 0.197 (11) 0.834 (15) 0.493 (16) 13.75
yi-34b-chat 0.010 (14) 0.128 (18) 0.842 (12) 0.558 (11) 13.75
meta-llama-3-8b 0.007 (17) 0.189 (12) 0.817 (17) 0.556 (12) 14.50
yi-6b 0.006 (18) 0.180 (13) 0.810 (20) 0.514 (14) 16.25
meta-llama-3-70b 0.008 (16) 0.177 (15) 0.814 (19) 0.508 (15) 16.25
mistral-7b-v0.1 0.010 (14) 0.151 (17) 0.841 (14) 0.392 (20) 16.25
yi-6b-chat 0.004 (19) 0.088 (19) 0.833 (16) 0.478 (18) 18.00
gemma-7b-it 0.002 (20) 0.025 (20) 0.815 (18) 0.459 (19) 19.25

TABLE III
LLM PERFORMANCE RANKINGS ACROSS METRICS - DSB.

Model BLEU ROUGE BERT RAGAS Average

mistral-7b-instruct-v0.1 0.201 (1) 0.405 (1) 0.896 (1) 0.716 (2) 1.25
meta-llama-3-70b-instruct 0.187 (2) 0.397 (2) 0.890 (3) 0.710 (3) 2.50
nous-hermes-2-solar-10.7b 0.179 (3) 0.379 (4) 0.890 (3) 0.726 (1) 2.75
gemma-2b-it 0.150 (4) 0.385 (3) 0.892 (2) 0.662 (7) 4.00
qwen1.5-7b 0.126 (6) 0.332 (6) 0.883 (5) 0.672 (5) 5.50
mixtral-8x7b-instruct-v0.1 0.136 (5) 0.345 (5) 0.879 (7) 0.671 (6) 5.75
qwen1.5-14b 0.112 (7) 0.325 (7) 0.882 (6) 0.693 (4) 6.00
mistral-7b-instruct-v0.2 0.097 (9) 0.314 (9) 0.875 (8) 0.629 (8) 8.50
llama-2-70b-chat 0.101 (8) 0.301 (11) 0.871 (9) 0.590 (10) 9.50
gemma-7b 0.081 (10) 0.316 (8) 0.861 (10) 0.557 (14) 10.50
llama-2-13b-chat 0.072 (12) 0.270 (13) 0.861 (10) 0.593 (9) 11.00
gemma-2b 0.081 (10) 0.313 (10) 0.852 (13) 0.554 (15) 12.00
llama-2-7b-chat 0.064 (13) 0.259 (15) 0.856 (12) 0.540 (16) 14.00
yi-34b-chat 0.042 (14) 0.185 (18) 0.852 (13) 0.580 (11) 14.00
meta-llama-3-70b 0.042 (14) 0.256 (16) 0.833 (17) 0.566 (13) 15.00
yi-6b 0.034 (18) 0.284 (12) 0.825 (19) 0.572 (12) 15.25
mistral-7b-v0.1 0.042 (14) 0.216 (17) 0.847 (15) 0.450 (20) 16.50
meta-llama-3-8b 0.038 (17) 0.267 (14) 0.831 (18) 0.527 (18) 16.75
yi-6b-chat 0.014 (19) 0.117 (19) 0.840 (16) 0.499 (19) 18.25
gemma-7b-it 0.003 (20) 0.046 (20) 0.825 (19) 0.540 (16) 18.75

ally lower correlations with other metrics, particularly with
BERTScore (r = 0.47 in DSA and r = 0.55 in DSB) and
ROUGE (r = 0.36 in DSA and r = 0.49 in DSB), suggesting
that relevance may be influenced by factors not fully captured
by these traditional metrics.

B. Ranking of Language Models

Next, we determine which LLMs performed best across both
datasets. To achieve this, we ranked the LLMs according to
their BLEU, ROUGE, BERT, and RAGAS scores, and then
calculated the average rank of these ranked scores to determine
the overall performance. Table II displays the ranking for the
DSA dataset and Tab. III displays the results for the DSB
dataset.

The Spearman’s rank correlations are 0.93 for BLEU, 0.94
for ROUGE, 0.95 for BERT, and 0.91 for RAGAS, all with
p-values of 0.0000. The strong Spearman’s rank correlations
across BLEU, ROUGE, BERT, and RAGAS metrics confirm
the consistency of performance rankings between DSA and
DSB. High-performing models in DSA tend to excel in
DSB, while lower-ranked models consistently underperform,
highlighting the robustness of the evaluation and the need for
targeted improvements.

The analysis reveals that certain LLMs consistently per-
form well across both datasets, securing top positions in

the rankings. Notably, the models nous-hermes-2-solar-10.7b,
mistral-7b-instruct-v0.1, qwen1.5-7b, and gemma-2b-it con-
sistently appear in the top five, demonstrating their robustness
and reliability across multiple evaluation metrics.

Conversely, some models consistently rank lower across the
datasets. Specifically, yi-6b, mistral-7b-v0.1, yi-6b-chat, and
gemma-7b-it frequently appear in the bottom five, indicating
a need for further optimization to improve their performance
relative to the other models evaluated.

C. Comparative Analysis of Top and Bottom Performers

# Parameter

Context Size

IFEval

BBH

MATH Lvl 5

GPQA

MUSR

MMLU-PRO

5
10

15
20

25
30

35
40

bottom
mediocre
top

Fig. 3. Top vs. bottom performers with LLM Characteristics.

The radar plot in Fig. 3 illustrates the performance across
multiple evaluation benchmarks, including IFEval, BBH,
MATH Level 5, GPQA, MUSR, and MMLU-PRO, as well as
LLM characteristics, such as Context Size and the number of
parameters, for top, mediocre, and bottom-performing models.
The top models, marked by the green area, demonstrate
balanced performance, with noticeable strengths in IFEval
and Context Size. These strengths suggest their proficiency
in adhering to strict instructions and managing large contexts,
making them suitable for complex RAG tasks.

The mediocre performing models, depicted in grey, show
strengths in specific external benchmark tasks, such as IFEval
and BBH, where larger parameter sizes are beneficial for
complex reasoning or handling large contexts. However, when
evaluated on our datasets (DSA and DSB) using key metrics
like BLEU, ROUGE, BERT, and RAGAS, these models un-
derperform compared to the top models. This suggests that
while these models excel in specific external benchmarks,
they do not consistently deliver high-quality text generation
across the broader range of tasks reflected in our datasets.
Consequently, these models can be seen as expert performers
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in their specialized domains but less general in their applica-
bility, which limits their classification as top performers in the
broader evaluations conducted in this study.

The bottom performers, shown in red, lag behind, especially
in MATH Level 5 and BBH, highlighting their struggles with
mathematical reasoning and broader comprehension tasks.
The clear gap in performance across metrics underscores the
challenges these models face in complex scenarios.

In a 2-component PCA with loadings (Fig. 4), each axis
(Principal Component 1 and Principal Component 2) repre-
sents a combination of original variables that maximize the
variance in the data. The loadings for each variable (repre-
sented by arrows) indicate how much each original variable
contributes to the principal components. Variables that align
closely with the axes of the principal components have a strong
influence on those components. In this biplot, the loadings for
metrics such as IFEval, Context Size, BLEU, ROUGE, BERT,
and RAGAS point in similar directions, indicating that these
metrics are positively correlated and contribute similarly to
the principal components. Conversely, variables like MATH
Lvl 5, number parameter, and BBH align more closely with
Component 2, suggesting that they capture different aspects of
model performance. Notably, the PCA explained variance is
0.72, indicating that these two principal components account
for 72% of the total variance in the data, which provides a
robust summary of the relationships between the evaluation
metrics and model characteristics.

Top-performing models spread more across both Principal
Component 1 and Principal Component 2, indicating that
they excel across a wider range of performance dimensions.
In contrast, bottom performers are more clustered along the

second component, with most variation occurring only along
the first component, reflecting their more limited and incon-
sistent performance. Interestingly, IFEval, though linked to
instruction adherence, aligns more closely with the first group
of variables, indicating that LLMs excelling in IFEval and
handling large contexts are well-suited for producing high-
quality RAG outputs.

V. CONCLUSION AND FUTURE WORK

This study introduces a framework for evaluating open-
source LLMs in RAG tasks, using metrics like BLEU,
ROUGE, BERTScore, and the new RAGAS metric. By analyz-
ing 20 LLMs across two datasets, we found that models like
nous-hermes-2-solar-10.7b and mistral-7b-instruct-v0.1 con-
sistently performed well, making them ideal for tasks requiring
strong overall performance. In contrast, models like yi-6b
and gemma-7b-it struggled, especially in more complex tasks,
suggesting they are better suited for simpler applications.

Although this study didn’t directly test instruction-following
or context management, the strong performance of the top
models suggests they handle these tasks well. The RAGAS
metric, which evaluates multiple aspects of text quality, offers
a more comprehensive assessment. However, it needs further
testing to become a widely accepted standard.

While ethical issues like bias in LLM outputs are important,
this study didn’t address them directly. Future research should
include evaluations of these concerns, along with other factors
like energy efficiency related to model size. Expanding the
evaluation framework to include more diverse datasets will
also help tailor LLMs to specific tasks more effectively.
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