
Machine Learning with Applications 16 (2024) 100554

A
2
n

Contents lists available at ScienceDirect

Machine Learning with Applications

journal homepage: www.elsevier.com/locate/mlwa

Anomaly detection in log-event sequences: A federated deep learning
approach and open challenges
Patrick Himler ∗, Max Landauer, Florian Skopik, Markus Wurzenberger
Austrian Institute of Technology, Giefinggasse 4, Vienna, 1220, Austria

A R T I C L E I N F O

Keywords:
Log event sequences
Anomaly detection
Deep learning
LSTM
Federated learning

A B S T R A C T

Anomaly Detection (AD) is an important area to reliably detect malicious behavior and attacks on computer
systems. Log data is a rich source of information about systems and thus provides a suitable input for AD.
With the sheer amount of log data available today, for years Machine Learning (ML) and more recently Deep
Learning (DL) have been applied to create models for AD. Especially when processing complex log data, DL
has shown some promising results in recent research to spot anomalies. It is necessary to group these log lines
into log-event sequences, to detect anomalous patterns that span over multiple log lines. This work uses a
centralized approach using a Long Short-Term Memory (LSTM) model for AD as its basis which is one of the
most important approaches to represent long-range temporal dependencies in log-event sequences of arbitrary
length. Therefore, we use past information to predict whether future events are normal or anomalous. For the
LSTM model we adapt a state of the art open source implementation called LogDeep. For the evaluation, we
use a Hadoop Distributed File System (HDFS) data set, which is well studied in current research. In this paper
we show that without padding, which is a commonly used preprocessing step that strongly influences the AD
process and artificially improves detection results and thus accuracy in lab testing, it is not possible to achieve
the same high quality of results shown in literature. With the large quantity of log data, issues arise with the
transfer of log data to a central entity where model computation can be done. Federated Learning (FL) tries to
overcome this problem, by learning local models simultaneously on edge devices and overcome biases due to a
lack of heterogeneity in training data through exchange of model parameters and finally arrive at a converging
global model. Processing log data locally takes privacy and legal concerns into account, which could improve
coordination and collaboration between researchers, cyber security companies, etc., in the future. Currently,
there are only few scientific publications on log-based AD which use FL. Implementing FL gives the advantage
of converging models even if the log data are heterogeneously distributed among participants as our results
show. Furthermore, by varying individual LSTM model parameters, the results can be greatly improved. Further
scientific research will be necessary to optimize FL approaches.
1. Introduction

AD has been an actively researched field for decades in various
domains (Chandola, Banerjee, & Kumar, 2009). The goal of AD is to
find events and event sequences that deviate from normal behavior as
efficiently and timely as possible (Chalapathy & Chawla, 2019). In this
paper, we investigate the detection of anomalies in the cyber security
domain using log data analysis. In recent years, cyber attacks have
become more sophisticated and the attack surface has tremendously

∗ Corresponding author.
E-mail addresses: patrick.himler@ait.ac.at (P. Himler), max.landauer@ait.ac.at (M. Landauer), florian.skopik@ait.ac.at (F. Skopik),

markus.wurzenberger@ait.ac.at (M. Wurzenberger).

increased because of nowadays complex computer systems and net-
works. AD is used in Intrusion Detection Systems (IDS) to automatically
detect and classify intrusions, attacks, or violations of security policies
in infrastructures at network-level and host-level (Vinayakumar et al.,
2019). Conventional signature-based IDS, using patterns of already
known attacks and malicious behavior, have become insufficient. The
need for more adaptability, to enable detection of unknown attacks
such as zero-day exploits, is immanent. As a result, we see a shift
towards anomaly based IDS, which use various data sources like textual
vailable online 27 April 2024
666-8270/© 2024 The Authors. Published by Elsevier Ltd. This is an open access art
c-nd/4.0/).

https://doi.org/10.1016/j.mlwa.2024.100554
Received 22 December 2023; Received in revised form 4 April 2024; Accepted 26
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

April 2024

https://www.elsevier.com/locate/mlwa
https://www.elsevier.com/locate/mlwa
mailto:patrick.himler@ait.ac.at
mailto:max.landauer@ait.ac.at
mailto:florian.skopik@ait.ac.at
mailto:markus.wurzenberger@ait.ac.at
https://doi.org/10.1016/j.mlwa.2024.100554
https://doi.org/10.1016/j.mlwa.2024.100554
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mlwa.2024.100554&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Machine Learning with Applications 16 (2024) 100554P. Himler et al.
log data and network traffic data to reliably discover deviations from
a desired system behavior. AD supports reaching the goals of minimal
maintenance, human interaction, and delay in response time (Wurzen-
berger, Skopik, Settanni, & Fiedler, 2018). Currently, especially DL,
a branch of highly performant ML algorithms, is a hot spot in AD
research. DL aims to discover the essential differences between normal
and abnormal data with high accuracy (Liu & Lang, 2019). DL supports
security experts to react quickly and effectively to known and unknown
attacks, and to gain a broad overview of the threat landscape.

However it soon became apparent that DL for AD approaches also
incorporate limitations. For example, the transfer of sensitive data over
the Internet to a central node raises privacy concerns (Rahman, Tout,
Talhi, & Mourad, 2020). One promising solution to overcome those
limitations is a distributed paradigm called FL. FL enables model train-
ing directly on user devices or local servers without sharing raw data
with a central server. Instead, only model updates or aggregated gradi-
ents are exchanged, ensuring privacy is maintained. This decentralized
approach minimizes the risk of data breaches or privacy violations
compared to conventional centralized methods. FL can leverage the
vast amount of distributed data available across different devices or
locations, making it highly scalable. In AD, this distributed nature
allows the algorithms to learn from diverse data sources, capturing a
broader spectrum of anomalies and improving its generalization ability.
Furthermore, FL can tolerate device failures or communication issues
without effecting the overall training process, enhancing robustness
in real-world deployment scenarios. Conventional AD models often
require large volumes of data to be transferred to a central server for
training, leading to high communication costs, especially in resource-
constrained environments or low-bandwidth networks. FL alleviates
this burden by performing model training locally on each device or
edge server, with only model updates being transmitted. This reduces
communication overhead and minimizes latency, making FL suitable
for real-time AD applications (McMahan, Moore, Ramage, Hampson, &
y Arcas, 2017). AD systems must adapt to evolving data distributions
and emerging anomalies over time. FL supports continuous learning
by allowing models to be updated incrementally on distributed data
sources without the need for centralized retraining. This enables AD
systems to quickly adapt to changing environments and maintain high
detection accuracy over time.

However, despite its promising benefits, FL also faces several chal-
lenges and there remain several research gaps. While FL addresses
privacy concerns by keeping raw data decentralized, it still intro-
duces security and privacy risks, such as model poisoning attacks.
Protecting FL systems against such adversarial threats requires robust
security mechanisms and privacy-preserving techniques, which may
add complexity to the overall system design. Although FL reduces
communication overhead compared to centralized approaches, the co-
ordination and synchronization of model updates across a large number
of devices or clients can still incur non-negligible communication costs,
especially in scenarios with high device churn rates or unreliable net-
work connections. Efficient strategies for minimizing communication
overhead while ensuring convergence and model consistency remain
areas of ongoing research in FL.

It is also useful to utilize log data for training DL models. Log
data provide more detailed insights for behavioral understanding of
a system than network traffic data, because not only what a systems
communicates on the network is analyzed, but also internal processes.
Contrary to many available state of the art AD systems, which process
network traffic data, a paradigm shift towards log data should be
considered, because log data is generally available in unencrypted form
and contains low-level traces of system activities (Wurzenberger et al.,
2018). Most of the time, working with log data requires preprocessing
steps, where the textual log data are parsed into numeric formats.
After parsing, a DL model can process log data and classify them into
normal and anomalous log events (He, Zhu, He, & Lyu, 2016). To
2

detect not only individual anomalous log lines, i.e. point anomalies,
but also contextual anomalies, several log lines are combined into log-
event sequences. If parts of the data set are anomalies only in a certain
context but not isolated from that context, we speak of contextual
anomalies. To detect contextual anomalies, we need to consider both
contextual attributes, like passed time between data instances and
behavioral attributes such as occurrences of other instances before
or after (Song, Wu, Jermaine, & Ranka, 2007). The predestined DL
algorithm to achieve this is LSTM because it uses past information to
predict whether future events are normal or anomalous. LSTM is a type
of Recurrent Neural Network (RNN) architecture that is particularly
effective for sequence prediction tasks, including time series data anal-
ysis. The authors of Vinayakumar, Soman, and Poornachandran (2017)
claim that LSTM as a variant of RNN+ algorithm is one of the most
important approaches to represent long-range temporal dependencies
in log sequences of arbitrary length. For AD, this means that we use past
information to predict whether future events are benign or anomalous.
This past information is especially important when we want to detect
contextual and group anomalies.

Besides highlighting limitations when analyzing log-event sequences
with state of the art DL approaches, which have been partially ad-
dressed in Himler, Landauer, Skopik, and Wurzenberger (2023) this
work focuses on comparing the FL approach with the centralized
solution. The contributions are as follows:

• A critical discussion of state of the art DL approaches.
• Experiments with LogDeep utilizing the HDFS data set to confirm

results from Du, Li, Zheng, and Srikumar (2017) and provide a
basis for comparison with the FL implementation.

• Implementation of LogDeep in the flower framework1 and exper-
iments with evenly and unevenly split HDFS data sets.

• A discussion of current limitations and outlook for future research
topics in this area.

The remainder of the paper is structured as follows: Section 2 gives
an overview of state of the art approaches for log-based AD using
DL models. Furthermore, we explain FL and its basic features. Next,
Section 3 introduces our chosen approach describing all necessary
steps from raw log data to AD. Section 4 evaluates our approach and
compares it with state of the art solution (Du et al., 2017). Important
limitations are critically discussed and open research challenges are
listed in Section 5. Finally, Section 6 concludes this paper.

2. Background and related work

DL shows good performance and flexibility, especially when data
sets become larger and the structure of data becomes more com-
plex (Chalapathy & Chawla, 2019). The complexity lies in the fact
that anomalies often show clear abnormal characteristics in low di-
mensional space that are virtually not noticeable in higher dimensional
space. The choice of the DL architecture depends usually on the type
of input data.

2.1. Long Short-Term Memory

LSTM are good for processing sequential data (Chalapathy & Cha-
wla, 2019) and can be classified among others into supervised, semi-
supervised and unsupervised based on the need for data labels during
training. Labels indicate whether a respective data instance is normal
or anomalous. The differences between the individual approaches are
as follows (Chandola et al., 2009; Landauer, Onder, Skopik & and
Wurzenberger, 2023; Villa-Pérez, Alvarez-Carmona, Loyola-Gonzalez,
Medina-Pérez, Velazco-Rossell, & Choo, 2021):

1 https://flower.dev/

https://flower.dev/


Machine Learning with Applications 16 (2024) 100554P. Himler et al.

p
w
n
t
d
2
l
B
c
r
y
A
f

2

D
s
t
m
g
s
d
f
a
e
H
e
d
l
w
L
l
e
D
i
i
p
a
a
t

• Supervised: A fully labeled training set containing both normal
and anomalous data is required. A common approach is to build a
predictive model for both data classes. Then unseen data instances
are tested with the model to determine which class they belong
to. At first glance, it is easy to create a model like this, but it has
two major disadvantages: First, usually data sets contain fewer
anomalies than normal data which leads to an imbalanced class
distribution. Second, it is not trivial and thus challenging to label
the anomaly class.

• Semi-supervised: The prerequisite is that the training set only
contains normal data. After training with a portion of normal
data, the resulting model is corresponding to normal expected
behavior and can then be used to identify anomalies in the test
data set. This technique assumes availability of normal training
data sets which can be challenging in some application domains.

• Unsupervised: The system learns independently to distinguish
between normal and anomalous data without the prerequisite of
a labeled training set. This approach makes use of the intrinsic
properties of data instances. In principle, it is often the case that
investigated data sets have fewer anomalies than normal data.
The trained model should be robust against those few anomalies.
If this assumption does not apply, it will lead to a high false alarm
rate.

We have chosen to look into semi-supervised approaches for this
aper, because they reflect a realistic scenario with regard to real
orld applications to first learn a model in an anomaly-free area with
ormal data and then switch to live operation. This is also reflected in
he assumption that anomalies are predominantly rare and sometimes
ifficult to capture as opposed to normal data (Villa-Pérez et al.,
021). In recent years, many DL models have been proposed to analyze
og data and detect anomalies (Farzad & Gulliver, 2020; Nedelkoski,
ogatinovski, Acker, Cardoso, & Kao, 2020; Yang et al., 2021). We
onduct a survey of state of the art approaches and narrow down the
esults by filtering by the number of citations (more than 300), the
ear of publication (not older than 5 years) and the data sets used.
fter filtering, DeepLog, LogAnomaly and LogRobust described in the

ollowing sections stood out.

.1.1. DeepLog
The authors of Du et al. (2017) have developed an approach called

eepLog that uses an LSTM as DL model that processes log lines in
equences. The model thereby learns log patterns during normal execu-
ion and detects anomalies when log patterns deviate from the trained
odel. Even though this approach was published in 2017, it still has

reat significance to this day and is frequently used as a benchmark in
cientific publications. As a starting point of development, the authors
escribe that log entries in most cases have fixed patterns and also
ollow grammar rules. But they also state that it is still difficult to make

generalization about interesting features for different data sets. To
valuate their implementation, the authors use the HDFS data set (Xu,
uang, Fox, Patterson, & Jordan, 2009) and the OpenStack data set (Du
t al., 2017). The HDFS data set consists of log lines from a primary
ata storage system. The OpenStack data set contains administrative
ogs of virtual machine instances. DeepLog works in a semi-supervised
ay. Therefore only anomaly-free sequences are used for training the
STM model. First, the Spell (Du & Li, 2016) parser extracts so-called
og keys (=constant part) and parameter values (=variable part) from
ach log line. This way two separate AD systems can be set up. First,
eepLog verifies if the log key to be examined is a known one. In case

t is, it checks if parameter values indicate anomalies. The sequence
n which log keys occur can be used to detect so-called execution
ath anomalies. This type of anomalies corresponds to the contextual
nomalies explained above. The LSTM model uses a set of log keys with
fixed size, called window size, and leverages the gathered knowledge
3

o predict which log key should follow. After training the LSTM model,
DeepLog outputs possible candidates that were predicted with their
respective probabilities. In contrast to this, parameter values are used to
find irregularities in log lines with the same log keys. A matrix is built
up where each column corresponds to a log key and the corresponding
parameter values are entered in the rows. For the evaluation of the
matrix, an LSTM model can also be used. The individual parameter
values are used as input in the order in which they occur and an attempt
is made to generate a prediction for the following parameter value
based on this existing history. The structure of the DeepLog architecture
is shown in Fig. 1.

The two most important input parameters DeepLog needs are length
of the window under consideration and number of top candidates for
prediction. The choice of these parameters depends on the problem at
hand. For example, if one chooses a too large window size, DeepLog
provides a better overall picture resulting form a wide view in the past,
which leads to performance losses and long training time. The choice
for the number of candidates results in a trade off between detection
rate and false alarm rate.

2.1.2. LogAnomaly
LogAnomaly follows a similar approach as DeepLog. The authors of
Meng et al. (2019) claim that if one just looks at log keys rigidly, one

receives many false alarms, because log line structures and dependen-
cies can be highly complex. Therefore, they analyze not only log keys
but also semantics of the logs. For this, they use a method they call
template2vec. This method extracts semantics including synonyms and
antonyms. They use LSTM as DL model to predict consecutive logs and
HDFS as data set for evaluation. In addition, they also consider the Blue
Gene/L (BGL) data set (Oliner & Stearley, 2007), which consists of logs
from a supercomputer and was manually labeled. The authors designate
LogAnomaly as an unsupervised approach, but they use labels of the
data sets as ground truth for evaluation. According to the experiments
performed, LogAnomaly performs better than DeepLog based on the
evaluation metrics for the data sets investigated. However, a case
study in that paper shows that DeepLog triggered an alarm faster than
LogAnomaly in a single scenario.

2.1.3. LogRobust
In Zhang et al. (2019) the authors draw attention to instability of

log data. Instability is caused by the evolution of the logging process
itself and processing noise in log data. Evolution is based on constant
development of software and associated changes in source code and
logging statements. The introduction of noise already happens during
data collection. But logs can also be misinterpreted during parsing,
which both reduces the accuracy of an AD system. To counteract these
adverse influences, the authors of LogRobust rely on semantic vectors.
Like LogAnomaly, semantic properties of log lines are extracted, but
in contrast to previously discussed approaches, LogRobust can also
process new log lines if they are similar to known ones. To test this,
slightly modified log lines are inserted in the HDFS data set to be
examined. It is important to note that training of the model is still
performed with unmodified log lines, i.e., the original HDFS train-
ing data set. LogRobust also uses log-event sequences as input for a
LSTM, but it is a supervised approach and uses 6000 normal log-event
sequences and 6000 malicious log-event sequences which are chosen
randomly from the HDFS data set to train the model. As expected due
to the supervised approach metrics after training are better, for testing
without modified log lines, than for the other two approaches shown
above. Further evaluation shows that LogRobust still achieves good
metrics even with high injection rates of modified log lines in the test
data. The authors have not published the source code for their work,

but re-implementations are available.



Machine Learning with Applications 16 (2024) 100554P. Himler et al.
Fig. 1. DeepLog architecture based on Du et al. (2017).
2.2. Federated Learning

DL nowadays benefits from the sheer volume of data. However, with
this large quantity there arise issues with transferring this data to a
central server. FL tries to avoid this problem by having the training
data never leave local devices. A shared DL model is learned through
locally aggregated updates. Because the DL model is learned on local
devices, it also reacts better to environmental changes over time (Ito,
Tsukada, & Matsutani, 2021). The localization of data also takes privacy
and legal concerns into account. This could make it feasible in the
future that there is even a secure data exchange between organizations
that currently do not cooperate with each other. Coordination and
collaboration will become very important in the future, especially in the
cyber security domain. FL was first introduced in 2017, by researchers
of Google (McMahan et al., 2017). The term FL origins from the
fact that the model learning task is performed by a loose federation
of devices called clients which are coordinated by a central server.
Each client trains a local DL model only with a local training data
set and sends updates for a global model to a central server. It must
be mentioned that the central server that manages the training and
distribution of the global model must be trusted. Another reason why
it is interesting to deal with FL is to reduce communication costs.
Nowadays, devices like smartphones have fast processors and Graphics
Processing Units (GPU). Assuming that local data sets are small, the
described hardware can simply take over computation of DL models
instead of many devices taking up bandwidth unnecessarily by sending
data to a central server, thus reducing communication costs (McMahan
et al., 2017). A final statement on the saving of computational resources
is difficult, because it depends strongly on the other load of a client and
which energy resource, e.g., battery, is available. Basically, FL consists
of the following steps (Li, Fan, & Lin, 2020):

1. All participating clients get a generic global model from a central
server for local training.

2. Each client learns a local DL model with local data.
3. After the training phase, clients send back their local parameter

updates to the central server for aggregation.
4. The central server averages those updates and sends back an

updated version of the global model.
5. Those processes are repeated until desired performance with

respect to chosen metrics is achieved. One iteration of those
processes is called a round.

Fig. 2 depicts the process.
The authors of Yang, Liu, Chen, and Tong (2019) proposed the

following categorization of FL approaches based on how data is dis-
tributed among participating clients in feature and sample space, where
a sample is a single entry in a data set and a feature is a measurable
value of such entry (Bishop, 2006).

• Horizontal FL: The feature space is the same but the sample space
is different. An example would be two regional banks which have
different customers (= samples) but the business transactions (=
features) are very similar.
4

• Vertical FL: Unlike horizontal FL, it is the other way around, i.e. in
both data sets there are identical samples that can be recognized
by an identifier but have different features. For example, two
different companies have the same customers (= samples) with
the same residential address, but the companies provide different
services (= features) to these customers.

• Federated transfer learning: Data sets on the clients differ in both
sample and feature space. There is only a small overlap, e.g., in
the feature space, which allows conclusions to be drawn about
the entire sample- and feature space. This approach is still at the
beginning of a development but is mentioned here for the sake of
completeness.

The logs of the data sets, which we examine in this work, are
recorded centrally. We use the horizontal approach, because the logs
have the same feature space and are divided into parts individually
processed by a number of clients for experiments. So each client on
its own can make a local AD system and collaboratively learn from
others simultaneously. Specifically, local biases that arise due to lack
of heterogeneity in the training data can be overcome (Lavaur, Pahl,
Busnel, & Autrel, 2022). But existing FL approaches for AD are still
missing a uniform structure and are far from complete, especially when
utilizing log data.

2.2.1. Federated Learning for Anomaly Detection
The authors of Guo, Wu, Zhu, Yang and Han (2021) published

one of the few papers that apply FL in the context of AD to log
data. A central point of this research is that it deals with the issue
of transmission of updates between clients and servers. It has been
found that attackers can intercept communicated gradient updates
and thus violate the privacy protection of local data. Therefore, it is
advantageous if this communication is encrypted. However, encryption
always leads to a computational overhead which is proportional to the
size of gradient updates. The authors therefore propose a lightweight
FL method for AD called FLOGCNN. The lightweight model is achieved
due to model parameter reduction. As a result the AD model uses one-
dimensional convolution with very few parameters. For the evaluation
of the presented approach the authors use the HDFS data set and
Thunderbird data set (Oliner & Stearley, 2007). Thunderbird is an
publically available data set of logs collected from a Thunderbird
supercomputer system at Sandia National Labs in Albuquerque. The
data set distinguishes between alert and non-alert messages. This is a
labeled data set which can also be used for supervised approaches. For
FLOGCNN two roles are defined. A server aggregates gradient updates
and distributed participants, which are here called log owner. The
server randomly selects a number of log owners and sends initial model
parameters to them. Log owners learn independently and send updates
back to the server. For evaluation purposes, the authors compare their
implementation with a centralized LogRobust implementation. For both
implementations the source code is not publicly available. The author’s
implementation achieves slightly worse results for the metrics than
LogRobust. As a positive result the authors state a lower training time.
A limitation of this approach is that it only shows how to deal with



Machine Learning with Applications 16 (2024) 100554P. Himler et al.
Fig. 2. Illustrative FL scenario based on Rahman et al. (2020).
HDFS and Thunderbird logs. These are data sets with few features and
little variation. Therefore, feature reduction is easy. It is questionable
whether the presented architecture will perform as well, when other
log data sets are used.

3. Approach for Anomaly Detection with log-event sequences

In this section we provide an introduction to the data sets used
and present our approach for AD analyzing log-event sequences. The
preprocessing of log lines is an important step to prepare data as input
for DL networks. DeepLog which was described in the previous chapter
is adapted for this work. We decided to first implement DeepLog in a
centralized way and verify it with existing results. This is followed by a
decentralized FL implementation and here we also explain our chosen
FL aggregation algorithm.

3.1. HDFS data set

The HDFS is a file system designed for storing large files, batch
processing, and to run on commodity hardware. The data set was
generated 2009, in a private cloud environment (Amazon’s Elastic
Compute Cloud) using benchmark workloads and is described in detail
in Xu et al. (2009). It consists of 11.2 million system log entries. It was
manually labeled by Hadoop domain experts, to identify anomalies,
where the anomalies describe incorrect execution paths. 2.9% of all
system log entries were labeled as anomalous by those experts. The raw
HDFS logs are semi-structured and consist of a header- and a content
part. The log data are sliced into sequences according to block_ID’s.
Then each trace associated with a specific block_ID is assigned a ground
truth label: normal/anomaly. In this paper we use the HDFS data set
5

to test our adapted LogDeep implementation and to compare it with
published results of Du et al. (2017).

3.2. Centralized LogDeep adaption

A detailed search of codebases such as Github and Gitlab re-
vealed LogDeep (Donglee-Afar, 2020) to be the most promising re-
implementation, based on ratings, year of release, detailed documenta-
tion and ease of adaptation. LogDeep combines the work of Du et al.
(2017), Zhang et al. (2019) and Meng et al. (2019) to a framework for
AD utilizing log data and has already been adapted in other scientific
works, such as Guo, Yuan, and Wu (2021). Because of the scientific
relevance, we focused on the DeepLog part from this implementation.
As previously described, DeepLog uses LSTM as DL model. The main
adjustable parameters in the LogDeep implementation are:

• L: Number of layers of LSTM.
• 𝛼: Number of memory units in one LSTM block.
• Window size: Length of window under consideration.
• Candidates: Number of candidates that were predicted with their

respective probabilities.

After the parameters have been set, LogDeep reads the training
log-event sequences. The log-event sequences must have at least the
length of the specified window size. In principle, training of the DL
model and AD, that uses the trained model, are separate processes. The
reason for this is that after the training, the model is stored and can be
transferred somewhere else in order to perform AD there as well. The
Adam optimizer is used for the LSTM. This optimizer is often used for
tasks where sparse gradients are to be expected. The advantages of this



Machine Learning with Applications 16 (2024) 100554P. Himler et al.

t
2
a
c
d
S
(
a
o

4

2
t
d
t
S
m
>
a
m
o
w
i
O
T
c

4

t
w
h
n
3
e
a
o
a

optimizer are increased computational performance and low memory
requirements (Kingma & Ba, 2014). The LSTM delivers candidates with
a certain probability which log key is expected next in the log-event
sequences. Therefore, we use the cross entropy as loss function here,
which quantifies the difference between probability distributions. After
training, LogDeep can be used for AD. For this purpose, normal and
anomalous test data are read in separately. The model calculates which
log key comes next for each individual window and compares whether
this matches the log keys in the test data. If the following log key is not
contained in the proposed candidates, the whole log-event sequence is
marked as anomaly.

3.2.1. Padding
While analyzing the source code of LogDeep, we came across an

interesting fact. If we take a closer look at the HDFS data set, we
see that train and test normal log-event sequences consist of at least
10 consecutive log keys. However, in the test abnormal log-event
sequences, also shorter sequences occur. This results in a problem for
the window size, because the LSTM determines how far back it stores
past information. In order to be able to analyze these short sequences
with the model, so-called padding is applied. In this case, log-event
sequences are filled with a log key that not occurred in the data, in
order to achieve desired window size. This log key must be unique
and must not have occurred before, otherwise the data set would be
corrupted. Based on this discovery, we conducted another experiment
to show what effect padding has on LogDeep. Section 4.1 presents
the related results. If padding is omitted, LogDeep cannot process and
discards all test abnormal log-event sequences in the AD phase, which
number of log keys is less than the window size. The size of the training
and test normal data set remains the same, only the size of the test
abnormal data set is reduced.

3.3. Federated Learning LogDeep adaption

The FL implementation is based on the flower framework which
was released in July 2020 (Beutel et al., 2020). This framework is a
scaleable open source framework, in terms of number of clients. With
this it is very convenient to implement existing DL setups in a federated
setting and evaluate their convergence- and training time. One of the
main advantages of flower is that it is programming language- and ML
framework-agnostic by design. The flower core framework, as common
in FL, consists of a server and client part. The flower server is further
divided into three main components: Client Manager, FL loop and
Strategy. The client manager is responsible for communication between
connected clients. The strategy describes the aggregation algorithm of
updates. The algorithm we have chosen will be discussed below in
Section 3.4. The FL loop works as a central entity. It queries strategies,
receives updates from connected clients, computes global models and
returns computed models to clients via client manager. The client side
only waits for instructions from the server and executes them. The
client manager works with so called flower messages. These messages
are based on Remote Procedure Call (RPC) streams. RPC is efficient
for low bandwidth transmission, because of the binary serialization
format. So the client manager works as a RPC server for sending and
receiving flower messages (Beutel et al., 2020). Fig. 3 depicts the flower
architecture.

At the start of the FL process, the server passes model parameters
with the fit method to all the clients. All the clients receive parameters
for their local model and start the first training phase. After completion
of the first training phase, all clients send their current local model
parameters as an update to the server with the method get_parameters
and evaluate the local model with the normal and abnormal test data.
The server aggregates all received updates and sends them back again.
After that, all clients have the updated model parameters and the test
data is evaluated again with them in the so-called evaluation phase.
With this same level of knowledge, the clients start the next round
and try again to improve the model with their local training data. The
process described here can be repeated as often as desired and is shown
for 2 rounds in Fig. 4.
6

2

Table 1
Specifications of the laptop and the individual OpenStack instances.

OpenStack (central) OpenStack (FL)

Processor 8 VCPU 2 VCPU
RAM 16 GB 4 GB
OS Ubuntu 20.04 Ubuntu 20.04

Table 2
Splitting of HDFS data set in train- and test sequences.

Train sequences Test normal sequences Test abnormal sequences

4855 553,366 16,838

3.4. Federated Averaging

The Federated Averaging (FedAvg) aggregation algorithm assumes
𝐾 participating clients, where each client has a number of 𝑛𝑘 log lines
as training data and a local model weight 𝑤𝑘

𝑡+1. For the (𝑡+1)-th round
aggregation is given by Eq. (1).

𝑤𝑡+1 =
𝐾
∑

𝑘=1

𝑛𝑘
𝑛
𝑤𝑘

𝑡+1 (1)

where the global model weight update is denoted with 𝑤𝑡+1. 𝑛 indicates
otal number of log lines at 𝐾 clients (Li, Cheng, Liu, Wang, & Chen,
019). Besides FedAvg, there exist other more complex aggregation
lgorithms, which for example select only a part of total available
lients 𝐾 and which may differ from round to round. A listing and
escription of further aggregation algorithms, for example Federated
tochastic Gradient Descent (FedSGD) can be found in Lavaur et al.
2022). In this work we only consider FedAvg for simplicity. Moreover,
ggregating the gradient at each epoch would be more costly in terms
f bandwidth consumption and computing power.

. Evaluation

The re-implementation of DeepLog called LogDeep (Donglee-Afar,
020) was used as baseline for all further experiments. In the first step
he code base was analyzed. With the original code base only the HDFS
ata set can be processed. In our implementation the parameters for
he selected data set can be set and padding, which is described in
ection 3.2.1, can be activated or deactivated. The following require-
ents for the current implementation apply: python >= 3.6 and pytorch
= 1.1.0. Basically, DL requires a large amount of processor power
nd Random Access Memory (RAM). However, nowadays, more and
ore edge devices have the required resources and researchers work

n improving the resource-hungry requirements of DL. The experiments
ere performed on OpenStack instances. The specifications of the

ndividual OpenStack instances can be found in Table 1. A central
penStack instance was used to confirm results from Du et al. (2017).
he second type of OpenStack instance describes the specification of FL
lients and servers.

.1. Centralized LogDeep with HDFS data set

First, we verified that the evaluation metrics of LogDeep correspond
o those published in Du et al. (2017). For this purpose we set the
indow size to 10. The hidden size, which defines the number of
idden states, was set to 64. Further, the number of layers was set to 2,
umber of candidates to 9, batch size to 2048, and number of epochs to
00. These values were also taken from Du et al. (2017). As a basis for
valuation we used the freely available HDFS data set in parsed form
nd preselected splitting of train and test data (LogPAI, 2021). This way
ur implementation can be compared with other scientific publications
nd errors caused by parsing can be omitted. The number of log keys is
9 and the exact breakdown of the data set can be taken from Table 2.



Machine Learning with Applications 16 (2024) 100554P. Himler et al.
Fig. 3. Flower architecture based on Beutel et al. (2020).
Fig. 4. Flowchart of flower framework.
Table 3
Comparison between DeepLog and LogDeep.

Accuracy Precision Recall F1-Score

DeepLog (Du et al., 2017) – 95% 96% 96%
LogDeep (Donglee-Afar,
2020)

99.76% 95.63% 96.35% 95.99%
The Results show that the re-implementation achieves approxi-
mately the same metrics as in Du et al. (2017). The comparison is listed
7

in Table 3.
The effects of padding can be analyzed using the HDFS data set.
Since only the test abnormal sequences contain short log-event se-

quences smaller than the window size, padding is only applied there.



Machine Learning with Applications 16 (2024) 100554P. Himler et al.
Fig. 5. Comparison between padding and nopadding for LogDeep with HDFS log-event sequences.
Table 4
Comparison between padding and nopadding for LogDeep with HDFS log-event
sequences.

Accuracy Precision Recall F1-Score

padding 99.66% 95.13% 95.81% 94.45%
nopadding 99.66% 93.07% 89.03% 91.00%

By appending a unique log key, the log-event sequences are artificially
extended in order to be processed with the LSTM. In principle, this
results in a trade off. On the one hand, artificial lengthening gives
better results for the metrics. Attaching a unique log key to the test
abnormal sequences, labels the sequence explicitly, since the padding
character is unique for anomalous sequences, which makes AD trivial.
Therefore, the results are artificially improved due to padding, which is
misleading. On the other hand, without padding, log-event sequences
that are too short would simply be discarded and not fed into the AD
process. The number of test abnormal sequences is reduced from 16,838
to 10,647. The small amount of test abnormal sequences compared
to the test normal sequences indicates an imbalanced data set. In
summary, the AD algorithm itself is not inadequate, but the data set
to which it is applied is. The results of this experiment can be seen in
Table 4 and Fig. 5, where a significant reduction in the detection rate
of anomalies can be seen in the form of a reduction in recall.

4.2. Federated Learning LogDeep with HDFS data set

For FL experiments we ported the working LogDeep implementation
to 5 clients. Each client runs the same LogDeep implementation, but
with different data sets. The number of clients was chosen due to
resource limitations. The server used FedAvg as update aggregation
methods and started the FL process only when all 5 clients were avail-
able. We mainly investigate the capability of FL, how clients learn DL
models for AD with different sized data sets and number of epochs. The
number of epochs were decreased to 3 and compared to the results for
number of epochs of 300 in Section 4.2.3. Basically, we used padding to
make the results comparable with the centralized implementation. With
the training data set evenly and unevenly distributed over 5 clients,
almost the same performance can be achieved as with the centralized
implementation. The comparison between centralized and FL imple-
mentation is shown in Table 5, where uneven and even splitting of the
training data set are listed separately.

4.2.1. Federated Learning LogDeep with even splitted HDFS data set
First we divided training data evenly among all clients. With even

as well as with uneven splitting the sequences are shuffled. Otherwise
it could be that certain sequences only appear at certain times, e.g., at
night, which would only be seen by one client, if we keep the temporal
order of sequences. The even distribution is described in Table 6.
8

Table 5
Comparison between LogDeep(Centralized) and LogDeep(FL) for HDFS data set.

Accuracy Precision Recall F1-Score

LogDeep (Centralized Section 4.1) 99.66% 95.13% 95.81% 94.45%
LogDeep (FL) even splitted 99.59% 92.21% 94.22% 93.16%
LogDeep (FL) uneven splitted 99.65% 94.25% 93.73% 93.99%

Table 6
Even splitting of HDFS data set for 5 FL clients.

Client No. Train normal seq. Test normal seq. Test abnormal seq.

1 971 (20%) 553,366 16,838
2 971 (20%) 553,366 16,838
3 971 (20%) 553,366 16,838
4 971 (20%) 553,366 16,838
5 971 (20%) 553,366 16,838

The results of the metrics for even splitting of training data set for
5 clients and 3 rounds can be seen in Fig. 6, Figs. 7, 8 and 9. On the
𝑥-axis the respective rounds are shown where the letter L indicates a
local evaluation after training phase and letter G indicates a global
evaluation after the updates from all clients have been aggregated.

The accuracy, as shown in Fig. 6, is already very high with almost
98% in the first round and then seems to stagnate. The reason for this is
the imbalanced HDFS data set as explained in Section 4.1. The precision
increases continuously as Fig. 7 shows because the false positive log
sequence decreases over the rounds. A short-term high value of the
recall is shown in Fig. 8, which decreases again in the course of the
rounds due to refinement of the model parameters. This is related to
the desired increase in precision, which in turn can be at the expense
of the recall. Finally, the value of the F1 score climbs steadily, as can
be seen in Fig. 9.

4.2.2. Federated Learning LogDeep with uneven splitted HDFS data set
We have selected the following uneven distribution key for the

percentage distribution: Client 1 receives 5%, Client 2 receives 20%,
Client 3 receives 20%, Client 4 receives 5% and Client 5 receives 50%.
In our opinion, this distribution could describe a realistic scenario,
where one client keeps a lot of log data locally and can use it for model
training and other clients keep much less log data locally but can learn
from other participating clients. The uneven distribution is described
in Table 7.

The first signs that FL has a useful effect can be seen in the following
results. The clients with the lowest percentage of training data sets
first achieve poor results and then improve on account of collaborative
learning. The results of the metrics for 5 clients and 3 rounds can be
seen in Figs. 10, 11, 12 and 13.

The accuracy is again high from the start as Fig. 10 shows because
of the imbalanced data set as explained in Section 4.2.1. Fig. 11 shows



Machine Learning with Applications 16 (2024) 100554P. Himler et al.
Fig. 6. Accuracy for 5 Clients with even splitted HDFS data set.
Fig. 7. Precision for 5 Clients with even splitted HDFS data set.
Fig. 8. Recall for 5 Clients with even splitted HDFS data set.
Table 7
Uneven splitting of HDFS data set for 5 FL clients.

Client No. Train normal seq. Test normal seq. Test abnormal seq.

1 243 (5%) 553,366 16,838
2 971 (20%) 553,366 16,838
3 971 (20%) 553,366 16,838
4 243 (5%) 553,366 16,838
5 2427 (50%) 553,366 16,838

for Client 4 a precision of only around 70%. This could be due to the
fact that Client 4 only receives 5% of the train sequences. Client 1
also received only 5% of the train sequences but due to the random
9

splitting of the HDFS train dataset it is possible that LSTM from Client
1 simply received a more significant portion in terms of AD than Client
4. Because of the padding function the values for the recall are also
already high from Round 1 on as Fig. 12 shows. The small amount of
data received by Client 4 and its impact on the F1 score can be seen in
Fig. 13.

4.2.3. Federated Learning with HDFS data set: Number of epochs
For this series of experiments we vary the number of epochs for the

uneven distributed HDFS training data set. The purpose is to show that
FL is able to reduce the number of epochs and thus shorten training
time while still producing acceptable results. For this experiment, we

reduce the number of epochs from 300 to 3. A total of 3 FL rounds



Machine Learning with Applications 16 (2024) 100554P. Himler et al.
Fig. 9. F1-Score for 5 Clients with even splitted HDFS data set.
Fig. 10. Accuracy for 5 Clients with uneven splitted HDFS data set.
Fig. 11. Precision for 5 Clients with uneven splitted HDFS data set.
are run. In this experiment, the effect of FL is seen most clearly. By re-
ducing the epoch, the model still converges very quickly. A comparison
between 300 and 3 epochs can be seen in Table 8. Nearly equal metrics
can be obtained. The reduced precision comes from increased false
positive alarms, but even more anomalies can be detected. The results
of the metrics for 5 clients and 3 rounds with 3 epochs of training can
be seen in Figs. 14, 15, 16 and 17.

Figs. 14, 15, and 17 clearly demonstrate the effect of uneven split-
ting. The same distribution of training sequences has been used as
shown in Table 7. Compared to the results from Sections 4.2.1 and
4.2.2, the reduction of the epochs leads to a slower increase of the
accuracy and precision. Because of the padding function, the recall as
10

shown in Fig. 16 remains at a high level from the beginning.
Table 8
Comparison between LogDeep(FL) 300 Epochs and LogDeep(FL) 3 Epochs.

Accuracy Precision Recall F1-Score

LogDeep (FL) 300 Epochs 99.65% 94.25% 93.73% 93.99%
LogDeep (FL) 3 Epochs 99.54% 87.15% 99.17% 92.77%

5. Discussion

The evaluation in Section 4 demonstrates that LSTM models in
general and the proposed LogDeep re-implementation are able to detect
contextual anomalies with high accuracy. While validating already
published scientific results for the HDFS data set, we noticed that a



Machine Learning with Applications 16 (2024) 100554

11

P. Himler et al.

Fig. 12. Recall for 5 Clients with uneven splitted HDFS data set.

Fig. 13. F1-Score for 5 Clients with uneven splitted HDFS data set.

Fig. 14. Accuracy for 5 Clients with uneven splitted HDFS data set and 3 epochs training.

Fig. 15. Precision for 5 Clients with uneven splitted HDFS data set and 3 epochs training.



Machine Learning with Applications 16 (2024) 100554P. Himler et al.
Fig. 16. Recall for 5 Clients with uneven splitted HDFS data set and 3 epochs training.
Fig. 17. F1-Score for 5 Clients with uneven splitted HDFS data set and 3 epochs training.
padding function was used. Padding results in an artificial lengthening
of log-event sequences. That means if log-event sequences are not at
least as long as the window size, they will not be considered at all
and discarded. Especially for the HDFS data set this has undesired
effects. The train and test normal sequences are sufficiently long log-
event sequences. This is important for the applied window size of the
LSTM model. Contrarily, the test abnormal sequences are artificially
lengthened with a unique log key. For AD it is trivial to detect these log-
event sequences, because they do not occur during training and testing
with normal sequences (Himler et al., 2023). Similar observations have
been made by Landauer, Skopik, and Wurzenberger (2023).

In the next steps, we implemented the central approach in a FL
environment. For this purpose we used the open source framework
flower, which allows to transfer central approaches into FL approaches.
For the experiments we implemented only 5 clients due to limitations
in computational resources. Furthermore, we have only examined Fe-
dAvg as an aggregation algorithm. Newer aggregation algorithms are
currently being researched. These aim to improve performance, for
example, by selecting the correct clients and excluding unsatisfying
local models (Lavaur et al., 2022; Li, Ma, Deng, Choo, & Yang, 2022).
For the HDFS data set slightly worse metrics for the FL approach could
be achieved compared to a centralized approach. This can be explained
by the aggregation algorithm FedAvg where only an averaging of the
aggregated updates takes place. Nevertheless, the results show that in
case of an uneven distribution over several clients, where one client
holds a lot of log data locally, FL allows other clients to learn a lot from
it and adapt their models locally. The results can be seen in Table 5 and
demonstrate the advantages of FL. In addition, our experiments with
reducing the number of epochs in Section 4.2.3 are already showing
promising results, which will lead to reduced training time for DL mod-
12

els in the future. Our results in Section 4.2.2 show that a heterogeneous
distribution of log data, FL can support clients to learn and benefit
from each other without an actual exchange of data sets taking place.
In the course of our experiments, we have considered the distribution
of data sets and the number of epochs as one of the main control
factors. The clients with the lowest percentage of training data sets first
achieve not so good results and then can improve the performance due
to collaborative learning. The experiments in Section 4.2.3, the effect
of FL is seen most clearly. By reducing the number of epochs, the model
still converges very quickly. It can be seen quite exactly the distribution
of train sequences in percentages as in Table 7 to the individual Clients
in the first round of the local calculation of the model. Compared to the
results from Sections 4.2.1 and 4.2.2, the reduction of the epochs leads
to a slower increase for the Accuracy and Precision. Nevertheless, open
challenges remain for further research in this area, a few of which are:

• Further research would be needed to determine if LSTM is the best
DL model to analyze log-event sequences. Current research shows
the emergence of combining individual DL models that were pre-
viously treated separately. The advantages of different approaches
are able to mitigate the disadvantages of others and thus lead to
better results in detection accuracy and/or performance (Wang,
Zhang, Wang, & Cao, 2021).

• The handling of imbalanced data sets where many normal log
lines face very few anomalous log lines or vice versa would need
further investigation. Furthermore, it is conceivable to reconsider
the log line sampling methodology, such as augmenting the count
of anomalous log lines through oversampling techniques (Farzad,
2020).

• To be able to generalize the results of this paper, in the future the
experiments should be carried out on a larger scale involving a

larger number of clients. A small number of clients could result in



Machine Learning with Applications 16 (2024) 100554P. Himler et al.

6

t
c
e
s
t
t
c
t
f

L
(
f
t
i
w
t
o
m
e
l
t
o
f
g
B
s
i
l
d
r

C

C

C

D

D

H

I

K

L

L

L

L

L

L

M

M

a skewed representation of data, which can lead to biased model
updates.

• As the number of clients continues to grow, it is important to
implement better aggregation algorithms than FedAvg. By in-
cluding clients with superior models, overall performance can
be increased. In contrast one or more clients can intentionally
or unintentionally degrade the overall model by setting certain
model parameters. Targeted attacks on FL networks such as data
poisoning attacks are described in Tolpegin, Truex, Gursoy, and
Liu (2020).

• Despite that advantage of FL that raw data has not to be shared,
local models still have to be shared. Furthermore, there is an
additional effort for the calculation of the final score for the AD.

. Conclusion and future work

In this paper we showed the necessary design steps and prerequisites
o consider for developing an approach for AD utilizing DL which
an handle a HDFS data set, and integrated this approach into a FL
nvironment. Our implementation uses a LSTM and AD for log-event
equences. In course of the implementation, limitations came to light
hat should be considered in future design processes. It is imperative
o have a basic understanding of how the log data to be analyzed are
ollected and structured. One of the biggest challenges for AD is to find
he most effective DL method for the use case at hand and its suitability
or a given data set.

We adapted a state of the art open source application called
ogDeep and were able to replicate the results from paper Du et al.
2017) which uses a HDFS (Xu et al., 2009) data set. However, we
ound a limitation that is caused by the used HDFS data set, which in
urn can be bypassed with the padding function. Through this function
t is possible to extend too short log-event sequences with respect to the
indow size, which is important for the application of LSTM. This has

o be done in the test abnormal sequences set which renders detection
f these sequences trivial. Consequently, the excellent detection perfor-
ance reported in the papers of Du et al. (2017) and Landauer, Skopik

t al. (2023) cannot be achieved without the padding function. With the
imitations in mind, we ported our central implementation of LogDeep
o a FL environment. There is evidence that FL has a positive impact
n the AD of log data, but due to the limitations described above,
urther scientific work is needed to substantiate this statement. In
eneral FL represents a promising approach for future AD applications.
ecause of the ongoing interconnection of modern infrastructures the
ecure exchange of log data across users, organizations, and countries
s of major importance. The application of FL provides AD systems a
arge knowledge base to spot attacks and adversarial behavior in log
ata. This in turn contributes to better countermeasures and greater
esilience of future systems.

RediT authorship contribution statement

Patrick Himler: Conceived and designed the analysis, Collected
the data, Performed the analysis, Wrote the paper. Max Landauer:
Conceived and designed the analysis, Contributed data or analysis tools,
Performed the analysis, Wrote the paper. Florian Skopik: Conceived
and designed the analysis, Collected the data, Performed the analysis,
Wrote the paper. Markus Wurzenberger: Conceived and designed the
analysis, Collected the data, Performed the analysis, Wrote the paper.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
13
Data availability

Data will be made available on request.

Acknowledgments

Funded by the European Union through the European Defence Fund
under GA no. 101121403 - NEWSROOM and GA no. 101103385 -
AInception. Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European
Union or the European Commission. Neither the European Union nor
the granting authority can be held responsible for them.

References

Beutel, D. J., Topal, T., Mathur, A., Qiu, X., Fernandez-Marques, J., Gao, Y., et al.
(2020). Flower: A friendly federated learning research framework. arXiv preprint
arXiv:2007.14390.

Bishop, C. M. (2006). Pattern recognition and machine learning (information science and
statistics). Berlin, Heidelberg: Springer-Verlag.

halapathy, R., & Chawla, S. (2019). Deep learning for anomaly detection: A survey.
arXiv preprint arXiv:1901.03407.

handola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM
Computing Surveys (CSUR), 41(3), 1–58.

onglee-Afar (2020). LogDeep. GitHub repository, GitHub https://github.com/donglee-
afar/logdeep.

u, M., & Li, F. (2016). Spell: Streaming parsing of system event logs. In 2016 IEEE
16th international conference on data mining (pp. 859–864). IEEE.

Du, M., Li, F., Zheng, G., & Srikumar, V. (2017). Deeplog: Anomaly detection and
diagnosis from system logs through deep learning. In Proceedings of the 2017 ACM
SIGSAC conference on computer and communications security (pp. 1285–1298). ACM.

Farzad, A. (2020). Log message anomaly detection with oversampling. International
Journal of Artificial Intelligence and Applications (IJAIA), 11(4).

Farzad, A., & Gulliver, T. A. (2020). Unsupervised log message anomaly detection. ICT
Express, 6(3), 229–237.

Guo, Y., Wu, Y., Zhu, Y., Yang, B., & Han, C. (2021). Anomaly detection using dis-
tributed log data: A lightweight federated learning approach. In 2021 international
joint conference on neural networks (pp. 1–8). IEEE.

Guo, H., Yuan, S., & Wu, X. (2021). Logbert: Log anomaly detection via bert. In 2021
international joint conference on neural networks (pp. 1–8). IEEE.

He, S., Zhu, J., He, P., & Lyu, M. R. (2016). Experience report: System log analysis for
anomaly detection. In 2016 IEEE 27th international symposium on software reliability
engineering (pp. 207–218). IEEE.

imler, P., Landauer, M., Skopik, F., & Wurzenberger, M. (2023). Towards detecting
anomalies in log-event sequences with deep learning: Open research challenges.
In Proceedings of the 2023 European interdisciplinary cybersecurity conference (pp.
71–77).

to, R., Tsukada, M., & Matsutani, H. (2021). An on-device federated learning approach
for cooperative model update between edge devices. IEEE Access, 9, 92986–92998.

ingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

andauer, M., Onder, S., Skopik, F., & Wurzenberger, M. (2023). Deep learning for
anomaly detection in log data: A survey. Machine Learning with Applications, 12,
Article 100470.

Landauer, M., Skopik, F., & Wurzenberger, M. (2023). A critical review of common
log data sets used for evaluation of sequence-based anomaly detection techniques.
arXiv preprint arXiv:2309.02854.

Lavaur, L., Pahl, M.-O., Busnel, Y., & Autrel, F. (2022). The evolution of federated
learning-based intrusion detection and mitigation: A survey. IEEE Transactions on
Network and Service Management, 19(3), 2309–2332.

i, S., Cheng, Y., Liu, Y., Wang, W., & Chen, T. (2019). Abnormal client behavior
detection in federated learning. arXiv preprint arXiv:1910.09933.

i, L., Fan, Y., & Lin, K.-Y. (2020). A survey on federated learning. In 2020 IEEE 16th
international conference on control & automation (pp. 791–796). IEEE.

i, B., Ma, S., Deng, R., Choo, K.-K. R., & Yang, J. (2022). Federated anomaly detection
on system logs for the internet of things: A customizable and communication-
efficient approach. IEEE Transactions on Network and Service Management, 19(2),
1705–1716.

iu, H., & Lang, B. (2019). Machine learning and deep learning methods for intrusion
detection systems: A survey. Applied Sciences, 9(20), 4396.

ogPAI (2021). Loghub: A large collection of system log datasets for AI-driven Log analytics.
Zenodo, URL https://zenodo.org/record/3227177.

cMahan, B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017).
Communication-efficient learning of deep networks from decentralized data. In
Artificial intelligence and statistics (pp. 1273–1282). PMLR.

eng, W., Liu, Y., Zhu, Y., Zhang, S., Pei, D., Liu, Y., et al. (2019). Loganomaly:
Unsupervised detection of sequential and quantitative anomalies in unstructured
logs. In IJCAI: vol. 19, (no. 7), (pp. 4739–4745).

http://arxiv.org/abs/2007.14390
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb2
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb2
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb2
http://arxiv.org/abs/1901.03407
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb4
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb4
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb4
https://github.com/donglee-afar/logdeep
https://github.com/donglee-afar/logdeep
https://github.com/donglee-afar/logdeep
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb6
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb6
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb6
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb7
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb7
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb7
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb7
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb7
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb8
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb8
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb8
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb9
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb9
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb9
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb10
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb10
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb10
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb10
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb10
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb11
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb11
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb11
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb12
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb12
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb12
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb12
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb12
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb13
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb13
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb13
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb13
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb13
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb13
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb13
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb14
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb14
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb14
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb16
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb16
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb16
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb16
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb16
http://arxiv.org/abs/2309.02854
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb18
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb18
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb18
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb18
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb18
http://arxiv.org/abs/1910.09933
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb20
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb20
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb20
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb21
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb21
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb21
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb21
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb21
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb21
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb21
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb22
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb22
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb22
https://zenodo.org/record/3227177
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb24
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb24
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb24
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb24
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb24
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb25
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb25
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb25
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb25
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb25


Machine Learning with Applications 16 (2024) 100554P. Himler et al.

V

Z

Nedelkoski, S., Bogatinovski, J., Acker, A., Cardoso, J., & Kao, O. (2020). Self-
attentive classification-based anomaly detection in unstructured logs. In 2020 IEEE
international conference on data mining (pp. 1196–1201). IEEE.

Oliner, A., & Stearley, J. (2007). What supercomputers say: A study of five system logs.
In 37th annual IEEE/iFIP international conference on dependable systems and networks
(pp. 575–584). IEEE.

Rahman, S. A., Tout, H., Talhi, C., & Mourad, A. (2020). Internet of things intrusion
detection: Centralized, on-device, or federated learning? IEEE Network, 34(6),
310–317.

Song, X., Wu, M., Jermaine, C., & Ranka, S. (2007). Conditional anomaly detection.
IEEE Transactions on knowledge and Data Engineering, 19(5), 631–645.

Tolpegin, V., Truex, S., Gursoy, M. E., & Liu, L. (2020). Data poisoning attacks against
federated learning systems. In Computer security–ESORICs 2020: 25th European
symposium on research in computer security, ESORICs 2020, guildford, UK, September
14–18, 2020, proceedings, part i 25 (pp. 480–501). Springer.

illa-Pérez, M. E., Alvarez-Carmona, M. A., Loyola-Gonzalez, O., Medina-Pérez, M.
A., Velazco-Rossell, J. C., & Choo, K.-K. R. (2021). Semi-supervised anomaly
detection algorithms: A comparative summary and future research directions.
Knowledge-Based Systems, 218, Article 106878.

Vinayakumar, R., Alazab, M., Soman, K., Poornachandran, P., Al-Nemrat, A., &
Venkatraman, S. (2019). Deep learning approach for intelligent intrusion detection
system. Ieee Access, 7, 41525–41550.
14
Vinayakumar, R., Soman, K., & Poornachandran, P. (2017). Long short-term memory
based operation log anomaly detection. In 2017 international conference on advances
in computing, communications and informatics (pp. 236–242). IEEE.

Wang, Q., Zhang, X., Wang, X., & Cao, Z. (2021). Log sequence anomaly detection
method based on contrastive adversarial training and dual feature extraction.
Entropy, 24(1), 69.

Wurzenberger, M., Skopik, F., Settanni, G., & Fiedler, R. (2018). AECID: A self-learning
anomaly detection approach based on light-weight log parser models. In ICISSP
(pp. 386–397).

Xu, W., Huang, L., Fox, A., Patterson, D., & Jordan, M. I. (2009). Detecting large-scale
system problems by mining console logs. In Proceedings of the ACM SIGOPS 22nd
symposium on operating systems principles (pp. 117–132).

Yang, L., Chen, J., Wang, Z., Wang, W., Jiang, J., Dong, X., et al. (2021). Semi-
supervised log-based anomaly detection via probabilistic label estimation. In 2021
IEEE/ACM 43rd international conference on software engineering (pp. 1448–1460).
IEEE.

Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated machine learning: Concept and
applications. ACM Transactions on Intelligent Systems and Technology, 10(2), 1–19.

hang, X., Xu, Y., Lin, Q., Qiao, B., Zhang, H., Dang, Y., et al. (2019). Robust log-based
anomaly detection on unstable log data. In Proceedings of the 2019 27th ACM joint
meeting on European software engineering conference and symposium on the foundations
of software engineering (pp. 807–817).

http://refhub.elsevier.com/S2666-8270(24)00030-6/sb26
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb26
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb26
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb26
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb26
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb27
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb27
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb27
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb27
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb27
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb28
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb28
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb28
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb28
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb28
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb29
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb29
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb29
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb30
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb30
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb30
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb30
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb30
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb30
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb30
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb31
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb31
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb31
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb31
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb31
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb31
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb31
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb32
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb32
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb32
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb32
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb32
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb33
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb33
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb33
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb33
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb33
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb34
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb34
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb34
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb34
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb34
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb35
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb35
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb35
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb35
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb35
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb36
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb36
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb36
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb36
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb36
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb37
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb37
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb37
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb37
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb37
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb37
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb37
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb38
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb38
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb38
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb39
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb39
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb39
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb39
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb39
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb39
http://refhub.elsevier.com/S2666-8270(24)00030-6/sb39

	Anomaly detection in log-event sequences: A federated deep learning approach and open challenges
	Introduction
	Background and Related Work
	lstm
	DeepLog
	LogAnomaly
	LogRobust

	fl
	fl for ad


	Approach for ad with log-event sequences
	hdfs data set
	Centralized LogDeep adaption
	Padding

	fl LogDeep adaption
	fedavg

	Evaluation
	Centralized LogDeep with hdfs data set
	fl LogDeep with hdfs data set
	fl LogDeep with even splitted hdfs data set
	fl LogDeep with uneven splitted hdfs data set
	fl with hdfs data set: Number of epochs


	Discussion
	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


