
Red Team Redemption: A Structured Comparison
of Open-Source Tools for Adversary Emulation

Max Landauer, Klaus Mayer, Florian Skopik, Markus Wurzenberger, Manuel Kern
Center for Digital Safety & Security

Austrian Institute of Technology
Vienna, Austria

firstname.lastname@ait.ac.at

Abstract—Red teams simulate adversaries and conduct sophis-
ticated attacks against defenders without informing them about
used tactics in advance. These interactive cyber exercises are
highly beneficial to assess and improve the security posture of
organizations, detect vulnerabilities, and train employees. Un-
fortunately, they are also time-consuming and expensive, which
often limits their scale or prevents them entirely. To address
this situation, adversary emulation tools partially automate
attacker behavior and enable fast, continuous, and repeatable
security testing even when involved personnel lacks red teaming
experience. Currently, a wide range of tools designed for specific
use-cases and requirements exist. To obtain an overview of these
solutions, we conduct a review and structured comparison of
nine open-source adversary emulation tools. To this end, we
assemble a questionnaire with 80 questions addressing relevant
aspects, including setup, support, documentation, usability, and
technical features. In addition, we conduct a user study with
domain experts to investigate the importance of these aspects for
distinct user roles. Based on the evaluation and user feedback, we
rank the tools and find MITRE Caldera, Metasploit, and Atomic
Red Team on top.

Index Terms—adversary emulation, open-source tools, user
study, red teaming

I. INTRODUCTION

The ever increasing number and sophistication of cyber
attacks poses many challenges to organizations [1], [2]. As
a consequence, security specialists employ a wide range of
countermeasures, including technical approaches for automatic
monitoring and intrusion detection [3], educational measures
such as security awareness trainings [4], policies or strategic
approaches such as incident response planning [5], vulnera-
bility management [6], risk assessments [7], and situational
awareness [8], among many more. However, even with many
diverse measures in place and functional, it is often difficult to
assess their effectiveness and completeness since blind spots
are easily missed [9].

It is thus common practice to conduct regular tests that chal-
lenge security defenses of organizations. The term penetration
testing generally refers to any activities related to the execution
of cyber attacks for the purpose of identifying risk areas and
weaknesses in applications, systems, and networks [10]. The
main purpose of penetration testing is to proactively recognize
security issues and improve the organization’s security posture
before an actual attacker with malicious intent is able to
intrude the network and cause any damage [11].

Red teaming has emerged as one of the most realistic and
advanced strategies to conduct comprehensive security tests.
Thereby, red teams, which comprise people with diverse skills
in cyber security domains and beyond, simulate adversaries
and conduct planned attack exercises without informing de-
fenders in advance [12]. In contrast to vulnerability assessment
and penetration testing, which only achieve to identify weak-
nesses and assess the risk associated with them, red teaming
relies on interaction between attackers and defenders and
thereby facilitates training of security teams and improvement
of their detection and response capabilities [13].

Unfortunately, the implication of such an interactive ex-
ercise is that red teaming is a mostly manual process that
incurs significant costs as it involves time-consuming tasks
conducted by experienced personnel [14]. To alleviate this
issue, adversary emulation tools are frequently employed to
automate some of the tasks in red teaming exercises, which
helps practitioners to establish a baseline of security measures.
Thereby, capabilities of these tools range from simple tech-
nique execution to full emulation of an adversary [14], [15].

While there is obviously some benefit in having a large
pool of adversary emulation tools to choose from, it is often
difficult to do so when one tries to select a suitable emulator
for a specific use-case and there is only limited time to explore
and experiment with several of the tools [16]. For example, in
situations where security professionals aim to conduct attacks
against very specific components and applications, suitable
tools should enable the creation of custom attack procedures
and not just support a predefined set of attack cases. Other
use-cases could revolve around more basic attack scenarios,
but require that they are executed by personnel without red
teaming experience, in which case usability of the tool is more
important than advanced technical capabilities. Anyway, it is
necessary to consider the needs and experience of the users of
adversary emulation tools to make an informed decision.

There are several challenges that need to be addressed.
First, it is non-trivial to identify all properties of adversary
emulation tools that should be taken into account. Second, it
is difficult to differentiate which properties are more relevant
than others, in particular, since users in different roles may
have distinct requirements and needs. Third, it is very time-
consuming to review multiple tools in a hands-on manner
to evaluate their appropriateness for certain use-cases. To

ar
X

iv
:2

40
8.

15
64

5v
1

 [
cs

.C
R

]
 2

8
A

ug
 2

02
4

address these challenges, we conduct a structured review and
comparison of adversary emulation tools comprising (i) a
literature study to collect relevant properties that we assemble
into a questionnaire, (ii) technical assessment with hands-
on experiments using a set of nine tools, and (iii) a user
study to ascertain the importance of properties for certain
user roles. In our work we thus answer the following research
questions: RQ1: What properties of adversary emulation tools
are the most relevant for stakeholders? RQ2: Which adversary
emulation tools are best suited to fulfill the needs of certain
user groups?

To the best of our knowledge, this work provides the most
comprehensive review and comparison of adversary emulation
tools. Other studies do not assess how important users rate
certain properties of tools [16], focus on detectability of tools
[17], [18], are limited to specific operating systems [19], [20],
or consider fewer questions [16] and tools [17] for evaluation.
Our study, on the other hand, aims at a broad comparison of
open-source tools. We summarize our contributions as follows:

• A questionnaire capturing properties and features of ad-
versary emulation tools,

• an online survey for assessment of relevance scores for
various aspects of these tools, and

• an evaluation and ranking of publicly available tools.
The remainder of the paper is structured as follows. Section

II summarizes the background of red teaming and related
works in the research field of adversary emulation tools.
Section III describes the methodology of our study, includ-
ing tool selection, questionnaire design, survey design, tool
evaluation, and scoring. Section IV provides an overview and
brief description of all selected tools. We present the results
the evaluation study and online survey in Sect. V and answer
our research questions in Sect. VI. Section VII concludes the
paper. We provide our questionnaire in Appendix A.

II. BACKGROUND & RELATED WORK

The term red teaming is often incorrectly used interchange-
ably with other types of security tests, in particular, penetration
tests. Kovačević et al. [12] thus conduct a literature study on
security tests. They conclude that while penetration tests are
short-term exercises that validate an organization’s security
posture, red teaming provides an ongoing training of security
personnel. The authors also state that beside simulating real
attackers, red teams also support organizations by acting as
devil’s advocates or consultants.

Given their definition, it is easy to understand that red
teaming is a mostly manual and interactive task that is difficult
to automate; nonetheless, several authors of scientific works
have proposed adversary emulation tools in an attempt to
take steps in that direction. For example, Plot et al. [21]
propose a Cyber Automated Red Team Tool (CARTT) that
provides an easy-to-use interface to carry out vulnerability
scans and obtain recommendations on how to mitigate threats
based on its findings. Another example is LACCOLITH, an
agent presented by Orbinato et al. [18], that was specifically
designed to evade detection by antivirus. Chen et al. [19], on

the other hand, design an adversary emulation tool for both
red and blue teaming exercises. However, their tools is only
designed for the macOS operating system.

Miller et al. [14] state that adversary emulation tools can
be a cost-effective alternative to red teaming events. They
mention several benefits of adversary emulation tools, such
as providing defenders with a view on their network from the
point of an attacker, identifying weaknesses or misconfigu-
rations, testing of deployed security measures, and providing
empirical evidence for a defensive blue team. The authors state
that adversary emulation tools should be (i) intelligent, i.e.,
select and chain actions similar to an actual adversary, (ii)
usable, i.e., require low overhead for utilization, (iii) realistic,
i.e., execute attack techniques in such a way as they occur in
the real world, and (iv) modular, i.e., allow users to customize
techniques and create new attack procedures.

These and similar requirements are at the core of scientific
reviews and surveys on the topic of adversary emulation.
Zilberman et al. [16] provide one of the most comprehensive
surveys, comprising eleven tools and 45 criteria. One of the
focus points of their study is to assess how many attack tech-
niques from MITRE ATT&CK are covered by each tool. In
addition, they evaluate compatibility with operating systems,
prerequisites for installation and running the tools, ease-of-use,
documentation, and many technical features such as logging,
cleanup, and the creation of custom attack scenarios. The main
difference to our work is that we conduct a study with domain
experts to better understand and weight the importance of each
of these requirements. Contrary to their work, we also put
less focus on the coverage of attack techniques and instead
include more fine-granular questions on other aspects, which
we outline in Sect. III.

Other studies on adversary emulation tools have a more
narrow focus. Orbinato et al. [18] compare multiple adversary
emulation tools with respect to their ability to evade detection
by antivirus. Their results suggest that their own approach,
which involves an agent that resides in the kernel, is more
reliable in evading detection than most other tools, which
require to manually configure exceptions in detection tools.
The issue of detection is also studied by Elgh et al. [17],
who analyze the number of Sysmon log events generated on a
Windows target host while four adversary emulation tools are
actively used to attack the machine. Since log events are a main
source for intrusion detection, it is essential that automated
attack simulations do not produce significantly more or more
severe events than manual execution of attacks. However, their
comparative study suggest that most tools are too noisy to
represent realistic attacks from actual advanced persistence
threats. Stockenreitner et al. [20] compare four tools with re-
spect to their coverage of MITRE ATT&CK techniques when
it comes to predefined attack procedures targeting Windows
and Active Directory. The study shows that most tools only
have limited capabilities in Windows environments. Other than
these works, our survey is not targeted at specific properties
of adversary emulation tools but instead relies on user studies
to identify important aspects.

QuestionnaireCollect and select
Adversarial

Emulation Tools

Scientific
literature

Web
resources

Identify and
categorize

relevant questions

IC

Conduct
online
survey

Conduct
offline tool
assessment

Weight
questions
and rank

tools by user
roles

CS
D
U
FC

IC‐1
IC‐2
IC‐3

FC‐1

IC‐1.1

FC‐1.1

IC‐1.2
IC‐3.1
IC‐3.2

Fig. 1. Overview of the methodology of our research.

III. METHODOLOGY

This section outlines our research methodology, including
strategies to select adversary emulation tools and create ques-
tionnaires for tool evaluations and user requirements analysis.

A. Overview

Figure 1 depicts our methodology as a flowchart. Initially,
we select a set of adversary emulation tools for our study by
conducting a web search for well-known open-source tools (cf.
Sect. III-B). Based on literature research and insights gained
from related studies, we then assemble a questionnaire that
enables assessment of these tools. Thereby, we consider the
following five categories of questions:

• Installation & Configuration (IC). Preparing systems and
configurations in such a way to enable effective utiliza-
tion of certain tools can often be time-consuming and
pose a burden to analysts. This category covers several
sub-categories, including compatibility of the tool with
different operating systems, requirements on third-party
tools, and tool configurability.

• Community & Support (CS). An active community behind
an open-source tool is highly valuable when questions
or issues emerge during its setup or utilization as they
provide rapid support and may even fix or extend the
tool in future releases following user feedback. This
category of questions aims to assess aspects regarding
the popularity of the repository as well as the activity of
involved developers.

• Documentation (D). The availability and extensiveness
of documentation is an important source of information
for analysts who deploy and use the tool. This category
covers metrics such as the comprehensiveness, currency,
comprehensibility, and standardization of tool documen-
tation.

• Usability (U). Well-designed user interfaces can vastly
improve user experience when interacting with a tool.
Questions in this category thus focus on assessing the
intuitiveness, appearance, and customizability of avail-
able user interfaces, such as graphical user interfaces or
command line interfaces.

• Features & Capabilities (FC). While some core function-
alities required for adversary emulation are shared among
all tools, some of them come with additional features and
capabilities that are essential for certain use-cases. The
sub-categories in this group of question address relevant
technical aspects such as the overall workflow, restoring
target systems after attacks, reporting and logging, chain-
ing of attacks, attack automation, coverage of diverse

attack techniques, customization and scripting of attacks,
and flexibility of attack execution.

The central part of Fig. 1 visualizes the structure of the
questionnaire; specifically, each category of questions (e.g.,
IC) are divided into one or more sub-categories (e.g., IC-
1), which in turn comprise one or more questions (e.g., IC-
1.1). We process the questionnaire in a two-step procedure.
First, we conduct an offline evaluation and assess how each
question is fulfilled by every tool through experimentation (cf.
Sect. III-C). Second, we carry out an online survey where we
ask stakeholders about their preferences and requirements on
adversary emulation tools (cf. Sect. III-D). As a final part of
our study, we combine the results from the offline evaluation
and online survey to assign a single score to each tool for the
purpose of ranking (cf. Sect. III-E). In the following sections,
we describe the steps of our methodology in more detail.

B. Selection of adversary emulation tools

For our comparative study, we aim to select a manageable
set of well-known open-source tools for adversary emulation.
To ensure that the identified tools are established technologies
of practical relevance, we scan through articles comparing
various penetration testing tools1 and validate with curated
lists of threat hunting software2 and tools analyzed in scientific
state of the art [16]–[18]. Thereby, we only include tools
that are suitable for attack simulation and exclude tools for
other types of security analytics, such as NSA Unfetter3

that enables vulnerability identification but does not support
attack execution. Moreover, we focus on stand-alone tools and
exclude frameworks that only build on top of such tools, such
as MATE4, Purple Team ATT&CK5, Splunk Attack Range6,
or ATT&CK Simulator7.

Eventually, we end up with the following nine open-
source tools for adversary emulation (sorted alphabetically):
ATTPwn8, Atomic Red Team9, APTSimulator10, MITRE
Caldera11, DumpsterFire12, Infection Monkey13, Invoke Ad-
versary14, Metasploit15, and Purplesharp16. We provide de-
scriptions for each of these tools in Sect. IV. We point out that
several commercial products for adversary emulation exist but
are excluded from this study for licensing issues.

1https://tinyurl.com/wayback-2021/pentestit.com/
adversary-emulation-tools-list/

2https://github.com/0x4D31/awesome-threat-detection
3https://nsacyber.github.io/unfetter/
4https://github.com/fugawi/mate
5https://github.com/praetorian-inc/purple-team-attack-automation
6https://github.com/splunk/attack range
7https://github.com/timfrazier1/AdversarySimulation
8https://github.com/Telefonica/ATTPwn
9https://github.com/redcanaryco/atomic-red-team
10https://github.com/NextronSystems/APTSimulator
11https://github.com/mitre/caldera
12https://github.com/TryCatchHCF/DumpsterFire
13https://github.com/guardicore/monkey
14https://github.com/CyberMonitor/Invoke-Adversary
15https://github.com/rapid7/metasploit-framework
16https://github.com/mvelazc0/PurpleSharp

https://tinyurl.com/wayback-2021/pentestit.com/adversary-emulation-tools-list/
https://tinyurl.com/wayback-2021/pentestit.com/adversary-emulation-tools-list/
https://github.com/0x4D31/awesome-threat-detection
https://nsacyber.github.io/unfetter/
https://github.com/fugawi/mate
https://github.com/praetorian-inc/purple-team-attack-automation
https://github.com/splunk/attack_range
https://github.com/timfrazier1/AdversarySimulation
https://github.com/Telefonica/ATTPwn
https://github.com/redcanaryco/atomic-red-team
https://github.com/NextronSystems/APTSimulator
https://github.com/mitre/caldera
https://github.com/TryCatchHCF/DumpsterFire
https://github.com/guardicore/monkey
https://github.com/CyberMonitor/Invoke-Adversary
https://github.com/rapid7/metasploit-framework
https://github.com/mvelazc0/PurpleSharp

C. Offline Tool Assessment

This section describes how we assembled and subsequently
answered the questions from the questionnaire. We used the
study by Zilberman et al. [16] as a guide to identify and
validate relevant questions for most categories. Specifically, we
use six questions on prerequisites and compatibility from that
study in category IC, six questions about comprehensiveness of
documentation for category D, six questions about availability
of core functionalities over various interfaces (e.g., attack
execution and configuration over graphical or command line
interface) for category U, and 29 questions on technical
aspects for category FC. Based on the work by Joy et al.
[22], who analyze open-source projects and validate that their
performance can be assessed through public metrics such as
number of forks, we formulate six questions for category IC.
Aversano et al. [23] propose quality indicators for documen-
tation of open-source software, which we use to formulate
eight questions in category D. Richter et al. [24], state several
criteria for usability in human-machine-systems, which we use
to formulate 13 additional questions for category U. Based on
our own experience, we pose five questions that deal with
attack chaining, blue teaming, and tool workflow in category
FC and one question that checks conformity to the IEEE
Standard for User Documentation [25] in category D.

Eventually, we end up with 80 questions (see Appendix A
for a list of all questions) that we use to evaluate each of
the selected adversary emulation tools. We answer questions
from categories CS and D by reviewing the documentation
and resources provided in the respective repository of the
tool. Regarding questions from categories IC, U, and FC,
we proceed by installing each adversary emulation tool in a
virtual environment and testing the features according to the
questions, e.g., by executing attack cases. The setup comprises
a Kali-Linux17 machine (Version 2024 with 4 GB RAM and 60
GB disk space) that acts as a command-and-control server, two
Metasploitable318 machines (Ubuntu 14.04 with 4 GB RAM
and 20 GB disk space as well as Windows Server 2008 with
4 GB RAM and 40 GB disk space) that act as target systems,
and two Windows machines (Versions 10 and 11, each with 8
GB RAM and 80 GB disk space) that act as both command-
and-control servers and target systems. We also cross-check
the documentation to ensure that no functions supported by
the tools are missed or misapplied.

Similar to the survey conducted by Zilberman et al. [16], our
assessment scheme consists of a four-point-scale, where we
assign 0 points if the question is not fulfilled, 1 point for partial
fulfillment, 2 points when the question is mostly fulfilled,
and 3 points if it is entirely fulfilled. For questions that are
answered with yes or no, we assign 3 and 0 points respectively.
Since category CS comprises quantitative questions, we assign
3 points if the retrieved value is in the top 25% of all gathered
values for that question, 1 point if it is in the bottom 25%,
and 2 points if it is in between.

17https://www.kali.org/
18https://github.com/rapid7/metasploitable3

D. Online Survey of User Requirements

The second part of our study aims to assess which of
the aforementioned functions and properties of adversary
emulation tools are most important for stakeholders to enable
weighting and ranking of tools. To this end we invite domain
experts to an online survey and ask them to assign relevance
scores to each of the 30 sub-categories of questions. We opted
for sub-categories rather than the entire questionnaire (c.f.
Sect. III-C) to reduce the number of questions from 80 to 30
and avoid asking for many technical specifics. One of them is
a general statement G-1: Tool is available for free that we add
even though it is not related to any category, but only used
to assess the preference of freely available tools in contrast
to commercial products. We design the survey following the
work by Achimugu et al. [26], who outline the Fuzzy Multi-
Criteria Decision-Making (FMCDM) method for prioritization
of software requirements. In particular, participants can rate
the importance of each sub-category on a five point scale
ranging from Not Important to Very Important, also including
No answer as an additional option.

Beside these questions, we ask participants to state their
professional experience, where we differentiate between cate-
gories Low (less than 3 years), Medium (3 to 6 years), and
High (more than 6 years), as well as their expertise with
adversary emulation tools, where we differentiate between
categories Low (not familiar), Medium (somewhat familiar),
and High (very familiar). In addition, we ask participants
about their current job position to identify differences in
preferences across groups of users. Specifically, we group
all participants to one of the following roles: Leaders (i.e.,
executives and managers), Security Architects (e.g., security
engineers and system administrators), Security Consultants,
Security Analysts, and Security Researchers.

The survey was hosted on a web platform from January
15, 2024, to March 15, 2024, and shared through a link
that we posted on cyber security mailing lists and within
project consortia to attract participants. At the beginning of
the survey, all participants were informed about the purpose of
the survey and consented that their responses will be published
anonymously as part of this study.

E. Feature Weights and Tool Ranking

We combine the results obtained from our offline tool
evaluation with the responses from our online survey to weight
properties of adversary emulation tools and create rankings
for certain user groups. To this end we map the five point
scale of user importance ratings to numeric weights as follows:
Not Important has a weight of 0.5, Rather Unimportant has
a weight of 0.75, Neutral has a weight of 1, Important has
a weight of 1.25, and Very Important has a weight of 1.5.
For each user role, we then compute the weight of each sub-
category of questions as the average of all responses from
participants that belong to that role. In the following, we
denote the average weights as wsubcat(q),role, where subcat(q)
is the sub-category of question q.

https://www.kali.org/
https://github.com/rapid7/metasploitable3

1

10

100

1000

10000

2012 2014 2016 2018 2020 2022 2024

N
um

be
r

of
 s

ta
rs

Tool

Metasploit

Atomic Red Team

Infection Monkey

MITRE Caldera

APTSimulator

DumpsterFire

Purplesharp

ATTPwn

Invoke Adversary

Fig. 2. Progression of received stars for the respective GitHub repositories
of each tool. Transition from solid to dashed lines indicate the last commit
made to the repository.

TABLE I
OPERATING SYSTEM SUPPORT AND REQUIREMENT TO INSTALL AGENTS

ON TARGET SYSTEMS FOR ATTACK EXECUTIONS

Supported Operating Systems
Tool Windows Linux MacOS Agents
ATTPwn ✓ ✓
Atomic Red Team ✓ ✓ ✓
APTSimulator ✓
MITRE Caldera ✓ ✓ ✓
DumpsterFire ✓ ✓ ✓
Infection Monkey ✓ ✓ ✓
Invoke Adversary ✓
Metasploit ✓ ✓ ✓ ∼
Purplesharp ✓ ✓

To compute an overall score for one of the reviewed
adversary emulation tools, we iterate over the list of questions
Qtool that we evaluated in the offline tool assessment and
multiply the score score(q) ∈ {0, 1, 2, 3} of question q with
the weight corresponding to subcat(q). As depicted in Eq. 1,
we compute the final score stool,role ∈ [0, 1] by normalizing
with 3·|Qtool|, since 3 is the maximum score for each question.

stool,role =
1

3 · |Qtool|
∑

q∈Qtool

score(q) · wsubcat(q),role (1)

Note that the total highest achievable number of points is
different for each tool, because there are two questions in
sub-category FC that are only applicable to tools that rely
on agents. Accordingly, these questions are not evaluated for
tools without agents and thus do not contribute to their scores.

IV. ADVERSARY EMULATION TOOLS

This section briefly describes each of the selected adversary
emulation tools and highlights some of their properties that
differentiate them from others. Since all tools are available
on GitHub, we provide a visual summary of the age and
popularity of the respective repositories in Fig. 2. The change
from solid to dashed lines indicates the point in time where
the most recent commit was made to the repository. As visible
in the plot, the most popular repositories are still maintained
while some of the other repositories have not been updated for

years and can be considered as discontinued by developers.
As visible in the plot, most repositories receive a significant
amount of stars in the first few weeks after release and then
continue to slowly grow in popularity over time.

We also summarize the compatibility of each tool with
operating systems as well as the need to install an agent
on the target system in Table I. The overview shows that
Windows is the most widely supported operating system,
but popular repositories (according to Fig. 2) also support
alternative operating systems. In the following, we go through
each tool in alphabetical order.

ATTPwn emulates threats following the schema defined by
MITRE ATT&CK and specifically covers many techniques
from the Defense Evasion and Discovery stages. The tool
focuses on Windows since installation requires Powershell 3.0
or above and most available attack techniques target Windows
machines, even though procedures for other operating systems
are available. Running the attacks requires that an agent
is downloaded from the command-and-control server to the
target system, which requires to add exceptions to firewalls
and antivirus. The graphical user interface is simple and well-
arranged, but does not provide any support or feedback for
users. Nonetheless, it allows to review and modify attack
scripts, even for attack chains. The most striking difference
to other tools is the lack of documentation that is limited to a
short readme file and some video tutorials.

Atomic Red Team comes with a large library of predefined
attack procedures, which is one of its key features in compar-
ison to other tools. Moreover, it includes scripts in markdown
and YAML format that support efficient setup of reproducible
and portable test environments. Both Atomic Red Team and
its attack-executor Invoke-Atomic are simple to install on
all common operating systems. The framework provides a
graphical user interface that allows efficient generation of
attack procedures as well as a command line interface to
execute attack procedures from the library. Knowledge of the
Python programming language is required to modify, combine,
or create entirely new attack steps. Due to the straightforward
design of the tools, the comparatively short documentation is
sufficient to understand and use all available functions.

APTSimulator is a Windows batch script that emulates a
compromised Windows system without the need for an agent.
Due to the straightforward nature of the tool, the short docu-
mentation in form of a readme file is sufficient to retrieve and
run the script. However, we noticed during our experiments
that it is necessary to apply exceptions to antivirus systems
in Windows in order to run the script. Attack procedures are
organized in a schema similar to MITRE ATT&CK and can
be executed in batches; in particular, all available attacks can
be run in a sequence. Creation of new attack cases is not
supported through the command line interface, but requires to
modify existing batch scripts or create new ones.

MITRE Caldera is designed to support cyber security
teams with autonomous and reproducible attack simulations
that are useful for testing of detection, analysis, and response
capabilities. Interestingly, it is the only tool that is not com-

patible with Windows, since the command-and-control server
needs to be installed either on Linux or MacOS. The tool
excels in terms of quality of documentation, which contains
comprehensive explanations of all relevant components, tutori-
als for execution of attacks, and even a chapter for developers.
In addition, MITRE Caldera offers interactive training to learn
the basic features of the tool.

The tool also stands out from the others due to the combi-
nation of high usability and extensive number of features. The
graphical user interface is accessible through a browser and
provides configuration options, an enumeration of available
attack procedures, and an overview of statuses for agents as
well as currently ongoing attacks. Attack executions may be
stopped or interrupted to add new procedures. To run the
attack simulations, agents must be installed on the target
systems, which can also be carried out through the graphical
user interface. Similar to most other tools, agent installation
requires exceptions in firewall and antivirus on target systems.

Beside preconfigured attack procedures, MITRE Caldera in-
tegrates procedures from other frameworks such as Metasploit.
Users have the possibility to create new attack procedures as
well as to modify existing ones, arrange them in chains for
parallel or sequential execution, and specify cleanup functions
that are executed after the fact. The tool also provides compre-
hensive logging and reporting functionalities, which support
output in JSON, CSV, text, or PDF files that even contain
visualizations of the compromised infrastructure.

DumpsterFire is a platform-independent tool based on the
Python programming language that is designed to generate
repeatable, delayed, and distributed security events. Users may
change existing and add new attack procedures as Python
scripts. Other than for most of the reviewed tools, the pre-
defined attack procedures are not categorized following any
model such as MITRE ATT&CK and include activities without
direct security implications, such as opening a browser and
playing videos. Moreover, the tool lacks some features present
in other tools, such as cleanup functions to restore target sys-
tems or the option to stop currently ongoing attack procedures.
DumpsterFire only provides a command line interface with
some basic help pages as well as a readme file. While the
console output itself can be regarded as a basic report, the tool
does not produce any logs or output files. Given that there is
only a single contributor to the repository and the most recent
commit dates to the year 2020, we assume that the project has
been discontinued.

Infection Monkey is designed to test security solutions.
The tool relies on a worm-like agent on the target system that
scans the network, executes attack procedures, and simulates
lateral movement. Both agent and command-and-control server
are compatible with Windows and Linux. The command-and-
control server is a web server providing a graphical user inter-
face that allows users to start and configure attack procedures
or store them as reusable templates. Moreover, it provides a
so-called Infectionmap showing compromised infrastructures
as well as information about target hosts. As for most tools,
firewall and antivirus block both the agent and server and must

be disabled. Infection Monkey generates detailed log files for
executed procedures and allows to generate a comprehensive
report. The documentation covers all functions of the tool,
but does not explain how users can create their own attack
procedures, which requires programming skills and cannot be
accomplished in the graphical user interface.

Invoke Adversary is a Powershell script useful to assess
security tools. Similar to APTSimulator, it is straightforward
to get started since there is no installation or deployment
of agents required; running the script is sufficient. The tool
comprises a menu in the command line interface that al-
lows to select and execute attack procedures. As there are
no predefined techniques for lateral movement available, the
tool is primarily useful to assess endpoint detection systems.
To generate new attack procedures, the script itself must
be adapted accordingly. Logging of executed procedures is
limited to the command line as no log files or reports are
stored. Note that exceptions for antivirus are necessary to run
the tool. The community and support behind the tool appears
to be comparatively limited, and there have not been any
updates for the tool since its initial release.

Metasploit is the oldest and by far the most popular penetra-
tion testing framework among all reviewed tools. It is backed
up by a large and active community of users and developers
and mainly used to detect and assess vulnerabilities of systems
and networks. In contrast to other tools from our study that
either require an agent on the target system or not, Metasploit
finds a middle ground as its Meterpreter allows to establish
an interactive shell, execute commands, and reload payloads
on the target similar to an agent. Attack procedures may
be represented as reusable templates and chained together;
however, to generate new procedures, users need to define
them in scripts in the Ruby programming language.

Logging in Metasploit is configurable for different log
levels. While Metasploit is a command line tool, we point
out that there is also a commercial version of Metasploit that
provides a graphical user interface but is excluded from our
study as we only focus on open-source tools. Metasploit comes
with 875 pages of documentation describing all modules in
detail and providing guidance for developers; this is the most
comprehensive documentation of all reviewed tools.

Purplesharp is written in C-Sharp and designed to carry
out attacks on Windows Active Directory. On the target host,
three agents are used for reconnaissance, attack execution, and
orchestration of attacks. Antivirus tools need to be disabled
to run the agents. The tool is started through the Windows
command line, but also provides a graphical user interface
in a browser that can be used to configure available attack
procedures. To generate new attack procedures, however, pro-
gramming skills are necessary. In general, the simple nature of
the tool enables automation and chaining of attack procedures
as well as inclusion of cleanup functions through playbooks
in JSON format. The documentation is sufficient to install the
tools and carry out predefined attack procedures. Purplesharp
also produces log files containing relevant information from
executed attack procedures.

V. EVALUATION

This section contains our evaluation results. We first present
a qualitative comparison of adversary emulation tools based on
our offline evaluation. Subsequently, we provide an overview
of the prioritized user requirements that we obtain from our
online survey. Finally, using the weighted features, we rank
adversary emulation tools for different user roles.

A. Technical Comparison

We conducted the offline evaluation of adversary emulation
tools according to our outline from Sect. III-C. Table II
summarizes the results of the evaluation. For each category
of questions, we state the total number of points achieved by
an adversary emulation tool (Pts. abs.), the maximum number
of achievable points (Pts. max), and the relative number of
achieved points (Pts rel. (%)). Note that the maximum number
of points is different in each category but also within category
FC since some questions only apply to agent-based tools and
are not evaluated for tools that do not make use of agents.

In category IC, most tools achieve relatively high points,
with the minimum score of 72.2% being achieved by four
tools. This indicates that technical obstructions that make it
difficult to get started with a tool are quite successfully kept
to a minimum. In general, most points in this category are
deducted for incompatibility with common operating systems
(IC-1.1) and required changes to security settings (IC-1.2). In
particular, running the tools often requires to add exceptions
in the firewall and antivirus of systems where the tool itself or
its agents are deployed. Atomic Red Team is the only tool
to achieve the highest possible score of 18 points as it is
compatible with all three considered operating systems and
does not rely on agents. MITRE Caldera, despite relying on
agents, notably achieves the second best score with 17 points.

Given that Metasploit is by far the most widely used tool
for adversary emulation, it is not surprising that it achieves
the highest possible score of 18 points in category CS. For
comparison, even though Atomic Red Team achieves 17 points
in that category, Metasploit has around three times as many
contributors (CS-1.2) and five times as many forks (CS-
1.1) as Atomic Red Team. Regarding category D, the table
shows that MITRE Caldera yields the highest score and is
closely followed by Atomic Red Team and Metasploit, while
many other tools fall behind. Our analysis reveals that most
documentations suffer from low readability scores (D-4.1)
and leave out descriptions on how to interpret the output of
executed procedures (D-1.6), generate custom procedures (D-
1.4), or arrange procedures as chains (D-1.5). Captions of
figures are also missing in almost all documentations (D-5.1).

Category U turned out to be a critical one, where many
tools only yield comparatively few points. MITRE Caldera
yields the highest score with 36 out of 57 points and is
followed by Infection Monkey with 31 points; other tools all
achieve only around 20 points. This is primarily caused by
limitations of user interfaces (U-5.3-U-5.6) and low flexibility
(U-7.2), in particular, many essential functions are often only
available through one interface (e.g., command line) but not

ATTPwn

0%

100%

IC

CS

D U

FC

Atomic Red Team

0%

100%

IC

CS

D U

FC

APTSimulator

0%

100%

IC

CS

D U

FC

MITRE Caldera

0%

100%

IC

CS

D U

FC

DumpsterFire

0%

100%

IC

CS

D U

FC

Infection Monkey

0%

100%

IC

CS

D U

FC

Invoke Adversary

0%

100%

IC

CS

D U

FC

Metasploit

0%

100%

IC

CS

D U

FC

Purplesharp

0%

100%

IC

CS

D U

FC

Fig. 3. Radar plots of scores for categories Installation & Configuration (IC),
Community & Support (CS), Documentation (D), Usability (U), and Features
& Capabilities (FC).

through another (e.g., graphical user interface). Other common
issues include lack of customizability of interfaces (U-6.1) and
limited guidance within the tool itself (U-3.1, U-3.2). One a
positive note, most tools yield reproducible results (U-1.1), are
hardly affected by errors (U-1.3), and their core functions are
easy to access and efficient to execute (U-7.1).

High diversity of results is also prevalent in category FC,
with MITRE Caldera (84 out of 102 points), Metasploit (77
out of 96 points), and Atomic Red Team (74 out of 96 points)
again forming the top. The main reasons for point reductions
are issues with firewall and antivirus during operation (FC-2.2,
FC-2.3, FC-2.6, FC-2.7), limited control of attack execution
(FC-5.3, FC-6.1, FC-9.1), unsuitable presentation of results
of attack executions (FC-4.3), and lack of blue teaming
functionalities (FC-7.4).

The radar plots displayed in Fig. 3 provide a visual overview
of the scores achieved by each tool. The plots show that
Atomic Red Team and Metasploit have comparatively high and
similar scores across all categories. MITRE Caldera exceeds
them in terms of usability (category U) but falls behind when
it comes to support from the community (category CS). The
radar plots of DumpsterFire, APTSimulator, Infection Monkey,
and Purplesharp have somewhat similar shapes that indicate
medium fulfillment across all categories. ATTPwn would fall
into a similar range, except that it yields the lowest possible
score in category D. Finally, Invoke Adversary appears to be
at the lower end of the spectrum in most categories.

Figure 4 visualizes the scores of pairs of categories for all
tools. The top plot shows that Atomic Red Team is ahead
of all other tools for categories CS and IC. The center plot

TABLE II
RESULTS OF THE OFFLINE EVALUATION

Installation &
Configuration (IC)

Community &
Support (CS) Documentation (D) Usability (U) Features &

Capabilities (FC)
Pts.
abs.

Pts.
max.

Pts.
rel. (%)

Pts.
abs.

Pts.
max.

Pts.
rel. (%)

Pts.
abs.

Pts.
max.

Pts.
rel. (%)

Pts.
abs.

Pts.
max.

Pts.
rel. (%)

Pts.
abs.

Pts.
max.

Pts.
rel. (%)

ATTPwn 13 18 72.2 9 18 50.0 0 42 0.0 19 57 33.3 65 102 63.7
Atomic Red Team 18 18 100.0 17 18 94.4 35 42 83.3 17 57 29.8 74 96 77.1
APTSimulator 13 18 72.2 10 18 55.6 24 42 57.1 19 57 33.3 42 96 43.8
MITRE Caldera 17 18 94.4 13 18 72.2 36 42 85.7 36 57 63.2 84 102 82.4
DumpsterFire 15 18 83.3 11 18 61.1 17 42 40.5 24 57 42.1 36 96 37.5
Infection Monkey 14 18 77.8 12 18 66.7 26 42 61.9 31 57 54.4 43 102 42.2
Invoke Adversary 13 18 72.2 7 18 38.9 12 42 28.6 13 57 22.8 24 96 25.0
Metasploit 15 18 83.3 18 18 100.0 33 42 78.6 21 57 36.8 77 96 80.2
Purplesharp 13 18 72.2 9 18 50.0 21 42 50.0 16 57 28.1 43 102 42.2

ATTPwn

Atomic Red Team

APTSimulator
MITRE Caldera

DumpsterFire

Infection Monkey

Invoke Adversary

Metasploit

Purplesharp
40

60

80

100

70 80 90 100

Installation & Configuration (IC)

C
om

m
un

ity
 &

 S
up

po
rt

 (
C

S
)

ATTPwn Atomic Red Team

APTSimulator

MITRE Caldera

DumpsterFire Infection Monkey

Invoke Adversary

Metasploit

Purplesharp

40

60

80

0 30 60 90

Documentation (D)

F
ea

tu
re

s
&

 C
ap

ab
ili

tie
s

(F
C

)

ATTPwn

Atomic Red Team

APTSimulator

MITRE Caldera

DumpsterFire

Infection Monkey

Invoke Adversary

Metasploit

Purplesharp

30

40

50

60

20 40 60 80

Features & Capabilities (FC)

U
sa

bi
lit

y
(U

)

Fig. 4. Pairwise comparison of category scores.

compares categories FC and D, which reveals that MITRE
Caldera, Atomic Red Team, and Metasploit form a group that
outperforms all other tools. While AttPwn comes close in
terms of FC, it yields the lowest score in terms of D. The
bottom plot shows that MITRE Caldera is the only tool that
combines high scores in categories U and FC. Metasploit and
Atomic Red Team have comparable scores in category FC but
fall behind in terms of U, and the exact opposite is the case for
Infection Monkey. We provide a unified ranking that considers
all categories in Sect. V-C, but first present the results of
our user requirement study in the following section that we
subsequently use for weighting aforementioned criteria.

B. Online Survey Results

This section contains the results of our online survey. We
first provide some details on the participants of our survey and
then present an overview of their responses.

TABLE III
ONLINE SURVEY PARTICIPANTS

Role Job Title Experience Expertise

Leaders

Head of Cyber Security Research* High High
Head of Research* High High
Chief Information Security Officer High Medium
Head of department High Medium
Head of department High High

Security
Architects

Senior Security Engineer High High
Enterprise Security Architect High Low
Security Engineer High High
DevSecOps Administrator High Low

Security
Consultants

Senior Security Consultant High High
Security Consultant Low Low
Security Consultant High Medium

Security
Analysts

SOC Analyst Low Medium
Senior Penetration Tester Medium High
Security Analyst High High
Security Specialist Medium Low

Security
Researchers

Head of Cyber Security Research* High High
Head of Research* High High
Scientist Medium Medium
Research Engineer High Medium

Unknown N/A N/A High
N/A High Low

1) Participants: Following our methodology from Sect.
III-D we published the survey over a period of two months,
after which 20 domain experts fully completed the survey.
Table III provides an overview of the meta information we
collected from all participants, specifically, their job title, job
experience, and expertise with adversary emulation tools. After
manually reviewing the job titles we grouped each participant
into one of five roles, except for two participants (Head of
Cyber Security Research and Head of Research) that fit into
roles Leaders and Security Researchers and whose responses
are thus counted in both groups. These participants are marked
with an asterisk in Table III. We opted for this setup to
ensure that we base our estimations on sufficiently many users
per role. Moreover, two participants did not state their job
position and are thus assigned to the Unknown role. Across
all roles, most participants state high job experience, which
we consider as an indicator for high-quality responses. On
the other hand, participants indicate mixed expertise with
adversary emulation tools, providing us with a diverse set of
opinions on requirements.

Fig. 5. Likert scale of domain experts rating the importance of aspects of adversary emulation tools.

2) Responses: We count the responses from all participants
and visualize the resulting distributions in Fig. 5, which enu-
merates all 30 sub-categories of questions. The sub-categories
in the plot are sorted by the relative number of positive
responses, i.e., categories mostly rated as Important or Very
Important appear in the top of the plot. Our survey reveals that
technical features from category FC that primarily concern
attack procedures form the most crucial requirements for
adversary emulation tools, in particular, tools should come
with a broad set of predefined attack procedures (FC-7),
but also enable to generate new attack procedures (FC-8)
and automate their execution in chains (FC-5, FC-6). Other
relevant aspects are reporting (FC-4) as well as stability (U-
1). The bottom part of the figure indicates that many aspects
from categories D, CS, and U are considered less relevant.

We also investigate the responses with respect to roles,
in particular, we counted the number of times participants
of certain roles selected Important and Very Important for
each category of questions. Our analysis suggests that Leaders
prioritize FC and CS over other categories, Security Architects
prioritize CS and IC, Security Consultants prioritize CS and
FC, and Security Analysts prioritize IC and FC. Out of all
roles, Security Researchers assign the highest weight to FC
and the lowest weight to U. In the following, we make use of
these role-specific weights to compare and rank tools.

C. Weighted Results and Tool Ranking

Using Eq. (1) stated in Sect. III-E, we are able to compute
a single score for each tool and user role. Figure 6 visual-
izes these scores and ranks the adversary emulation tools in

ascending order according to their average score across all
roles. As visible in the plot, MITRE Caldera is ahead of
all tools but closely followed by Metasploit and Atomic Red
Team that are roughly on par. These tools already emerged
as top performers during our analysis of Sect. V-A, which
suggests that weighting based on user requirements only has
minor influence on the overall ranking. We also observe that
Infection Monkey is slightly ahead, APTSimulator, ATTPwn,
DumpsterFire, and Purplesharp all roughly achieve similar
scores, and Invoke Adversary falls behind.

The influence of weights from different user roles does not
change the overall ranking of the top three tools. While the
ranks of other tools change, this is mostly due to the fact that
their average scores are close together and minor influences
on the scores are sufficient to affect the ranking. Note that we
mapped the responses of survey participants to quantitative
weights in a static way (cf. Sect. III-E), but this mapping can
be changed to arbitrary magnitudes and thus have a stronger
influence on the weighted scores. To obtain a better view on
the influence of user roles on the tool ranking, we thus measure
the deviation of each score from the mean score achieved
across all roles and visualize the results in Fig. 7. The plots
indicate that almost all tools are better suited to fulfill the needs
of Leaders and Analysts than Architects and Consultants; there
is no clear tendency for researchers. Moreover, functions and
properties of some tools address the requirements from specific
user groups, for example, Infection Monkey and Purplesharp
yield significantly higher scores for Security Analysts than for
any other role, where scores are either below or around the
average across all roles. We emphasize that this interpretation

Leaders Architects Consultants Analysts Researchers

0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60

Invoke Adversary
Purplesharp

DumpsterFire
ATTPwn

APTSimulator
Infection Monkey

Atomic Red Team
Metasploit

MITRE Caldera

Score (%)

Fig. 6. Scores of adversary emulation tools show that the ranks of tools are mostly the same across user roles.

Leaders Architects Consultants Analysts Researchers

-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

Invoke Adversary
Purplesharp

DumpsterFire
ATTPwn

APTSimulator
Infection Monkey

Atomic Red Team
Metasploit

MITRE Caldera

Deviation from mean score (%)

Fig. 7. Deviations from the mean score shows which tools involve functions and properties that align with the requirements of specific user roles.

of the results only indicate that the tools are well suited for
the requirements of specific user groups in comparison to an
average user and not that they are necessarily the most suitable
tools to be used by the respective user group.

VI. DISCUSSION

In this paper we outline a methodology to assess and
rank adversary emulation tools based on technical evaluations
and user requirements. Our questionnaire, survey results, and
interpretations can be an assistance for organizations and
security professionals when it comes to the selection of
adequate tools for certain use-cases. Thereby, we recommend
to consider updating the weights of relevant aspects so that
they better reflect the requirements of the respective situations,
for example, high usability (category U) and availability of
many predefined attack procedures (sub-category FC-7) may
be beneficial when the tool should be used by novices.

We recognize some limitations of our work. The selection
of tools (cf. Sect. III-B) is based on public sources, which
can be subject to bias. While we ensured to consult multiple
sources, they may fail to include suitable tools that have only
gained little attention or tools that have only been released
very recently. Moreover, we notice that our selected tools
vary strongly in terms of popularity (e.g., community size and
number of forks on GitHub) and that tools with stronger public
support usually outperform those that have fewer contributors
or have even been abandoned by developers. In particular,
comparing Fig. 2 and Fig. 6 shows that the ranking of tools we
obtain from our evaluation mostly followed the ranking based

on stars on GitHub. A notable exception to this observation is
MITRE Caldera, which ranks first based on our evaluation but
only fourth based on stars. Another limitation of our work is
the small number of participants in our online survey. While
we ensured that each group of users comprises at least 3 par-
ticipants, we expect that a higher number of participants could
yield more fine-granular insights into the differences between
user roles. With these limitations in mind, we formulate the
answers to our research questions as follows.

RQ1: What properties of adversary emulation tools are
the most relevant for stakeholders? To answer this question,
we worked out a questionnaire comprising categories and
sub-categories of questions that address various aspects of
adversary emulation tools. We then conducted a survey with
domain experts to assess the relevance of each of the identified
sub-categories. We present a detailed enumeration of user
ratings in Sect. V-B2, which shows that specific technical
features, including automation, configuration, and execution
of attack procedures, are among the most relevant features for
stakeholders. We also found that the ability to create reports
for results and absence of errors are important features of tools.

RQ2: Which adversary emulation tools are best suited to
fulfill the needs of certain user groups? Our analysis reveals
that users have different priorities depending on their roles,
for example, researchers prioritize technical capabilities over
usability. We state the prioritized categories of questions for
different user roles in Sect. V-B2 and analyze the influence of
roles on the scores and ranking of adversary emulation tools
in Sect. V-C. Considering the weighted scores, we identify

as MITRE Caldera, Metasploit, and Atomic Red Team as the
most suitable tools across all user groups. These findings align
with similar conclusions drawn from earlier studies [16].

VII. CONCLUSION

This paper presents a structured review and comparison of
adversary emulation tools. Based on studies in related research
areas, we design a questionnaire comprising five categories,
namely Installation & Configuration, Community & Support,
Documentation, Usability, and Features & Capabilities, with
a total of 30 sub-categories and 80 questions. We select nine
publicly available adversary emulation tools and evaluate to
what degree they fulfill each of the questions. In addition, we
conduct an online survey of domain experts to assign relevance
scores to each sub-category of questions. Finally, we weight
the evaluation results with user feedback to compute a single
score for each tool. Our results suggest that independent from
the user role, MITRE Caldera appears as the most suitable
tool, followed by Metasploit and Atomic Red Team. For
future work, we suggest to expand the range of adversary
emulation tools to obtain more detailed insights into their
peculiarities. In particular, we suggest to categorize tools
and design questionnaires for each group to better capture
and analyze properties that are specific to certain use-cases.
Moreover, expert interviews that complement online surveys
could be valuable to validate or come up with additional
questions or categories of questions. Finally, while we only
consider open-source tools in our survey, a similar study on
commercial products could yield insights on specialized tools.

ACKNOWLEDGMENT

Parts of this work were carried out in course of a Master’s
Thesis at the University of Applied Sciences Technikum
Vienna [27]. The work in this paper has received funding
from the European Union - European Defence Fund under
GA no. 101103385 (AInception) and GA no. 101121403
(NEWSROOM). Views and opinions expressed are however
those of the author(s) only and do not necessarily reflect those
of the European Union. The European Union cannot be held
responsible for them.

REFERENCES

[1] Mandiant, “M-trends 2023,” https://www.mandiant.com/m-trends, 2023,
online; accessed 2024-08-09.

[2] Crowdstrike, “Global threat report 2024,”
https://www.crowdstrike.com/global-threat-report, 2024, online;
accessed 2024-08-09.

[3] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey
of intrusion detection systems: techniques, datasets and challenges,”
Cybersecurity, vol. 2, no. 1, pp. 1–22, 2019.

[4] M. Zwilling, G. Klien, D. Lesjak, Ł. Wiechetek, F. Cetin, and H. N.
Basim, “Cyber security awareness, knowledge and behavior: A compar-
ative study,” Journal of Computer Information Systems, vol. 62, no. 1,
pp. 82–97, 2022.

[5] A. Ahmad, K. C. Desouza, S. B. Maynard, H. Naseer, and R. L.
Baskerville, “How integration of cyber security management and inci-
dent response enables organizational learning,” Journal of the Associa-
tion for Information Science and Technology, vol. 71, no. 8, pp. 939–953,
2020.

[6] R. Syed, “Cybersecurity vulnerability management: A conceptual ontol-
ogy and cyber intelligence alert system,” Information & Management,
vol. 57, no. 6, p. 103334, 2020.

[7] F. Cremer, B. Sheehan, M. Fortmann, A. N. Kia, M. Mullins, F. Murphy,
and S. Materne, “Cyber risk and cybersecurity: a systematic review of
data availability,” The Geneva papers on risk and insurance – Issues
and practice, vol. 47, no. 3, p. 698, 2022.

[8] A. Ahmad, S. B. Maynard, K. C. Desouza, J. Kotsias, M. T. Whitty, and
R. L. Baskerville, “How can organizations develop situation awareness
for incident response: A case study of management practice,” Computers
& Security, vol. 101, p. 102122, 2021.

[9] F. Skopik, M. Landauer, and M. Wurzenberger, “Blind spots of security
monitoring in enterprise infrastructures: a survey,” IEEE Security &
Privacy, vol. 20, no. 6, pp. 18–26, 2022.

[10] M. Alhamed and M. H. Rahman, “A systematic literature review on
penetration testing in networks: Future research directions,” Applied
Sciences, vol. 13, no. 12, p. 6986, 2023.

[11] A. A. Mughal, “Building and securing the modern security operations
center (SOC),” International Journal of Business Intelligence and Big
Data Analytics, vol. 5, no. 1, pp. 1–15, 2022.

[12] I. Kovačević and S. Groš, “Red teams-pentesters, APTs, or neither,”
in International Convention on Information, Communication and Elec-
tronic Technology. IEEE, 2020, pp. 1242–1249.

[13] M. Vos, “Capability maturity measurement of a security operations
center through analysis detection,” Master’s thesis, University of Twente,
2022.

[14] D. Miller, R. Alford, A. Applebaum, H. Foster, C. Little, and B. Strom,
“Automated adversary emulation: A case for planning and acting with
unknowns,” MITRE, 2018.

[15] A. Applebaum, D. Miller, B. Strom, H. Foster, and C. Thomas, “Analysis
of automated adversary emulation techniques,” in Summer simulation
multi-conference, 2017, pp. 1–12.

[16] P. Zilberman, R. Puzis, S. Bruskin, S. Shwarz, and Y. Elovici,
“Sok: A survey of open-source threat emulators,” arXiv preprint
arXiv:2003.01518, 2020.

[17] J. Elgh, “Comparison of adversary emulation tools for reproducing
behavior in cyber attacks,” Master’s thesis, Linköping University, 2022.

[18] V. Orbinato, M. C. Feliciano, D. Cotroneo, and R. Natella, “Laccol-
ith: Hypervisor-based adversary emulation with anti-detection,” IEEE
Transactions on Dependable and Secure Computing, 2024.

[19] Y.-H. Chen, Y.-D. Lin, C.-K. Chen, C.-L. Lei, and C.-Y. Huang,
“Construct macOS cyber range for red/blue teams,” in Asia Conference
on Computer and Communications Security, 2020, pp. 934–936.

[20] C. Stockenreitner, “Fähigkeitsanalyse von open-source Breach-
and-Attack-Simulation-Tools in Windows- und Active-Directory-
Umgebungen,” Master’s thesis, University of Applied Sciences
Technikum Vienna, 2022.

[21] J. Plot, A. Shaffer, and G. Singh, “Cartt: Cyber automated red team
tool.” HICSS, 2020.

[22] A. Joy, S. Thangavelu, and A. Jyotishi, “Performance of github open-
source software project: an empirical analysis,” in International Con-
ference on Advances in Electronics, Computers and Communications.
IEEE, 2018, pp. 1–6.

[23] L. Aversano, D. Guardabascio, and M. Tortorella, “Evaluating the
quality of the documentation of open source software,” in International
Conference on Evaluation of Novel Approaches to Software Engineering,
vol. 2. SciTePress, 2017, pp. 308–313.

[24] M. Richter, “Kriterien der Benutzerfreundlichkeit,” Philosophische
Fakultät der Universität Zürich, 1997.

[25] “IEEE Standard for Adoption of ISO/IEC 26514:2008 Systems and
Software Engineering–Requirements for Designers and Developers of
User Documentation,” IEEE Std 26514-2010, pp. 1–72, 2011.

[26] P. Achimugu, A. Selamat, R. Ibrahim, and M. N. Mahrin, “An adaptive
fuzzy decision matrix model for software requirements prioritization,”
Advanced approaches to intelligent information and database systems,
pp. 129–138, 2014.

[27] K. Mayer, “Evaluierung und Vergleich von Adversary Emulation Tools,”
Master’s thesis, University of Applied Sciences Technikum Vienna,
2024.

APPENDIX

A. Questionnaire

This section contains the list of questions used to evaluate
the selected adversary emulation tools in an offline setting. In
the following, categories are written in bold, sub-categories
are indicated by the number before the period, and question
identifiers are indicated by the number after the period. We
refer to Fig. 5 for an enumeration of all sub-categories.

Installation & Configuration (IC) ➢ IC-1.1: Which op-
erating systems are supported? ➢ IC-1.2: Are changes to
security settings or permissions required? ➢ IC-2.1: Is third
party software required? ➢ IC-2.2: Are there other require-
ments specific to operating systems? ➢ IC-3.1: Is it necessary
to pre-configure the tool? ➢ IC-3.2: Are special network
configurations required?

Community & Support (CS) ➢ CS-1.1: How many forks
does the project have? ➢ CS-1.2: How many contributors
does the project have? ➢ CS-1.3: What is the age of the
project (in days)? ➢ CS-1.4: What is the size of the project
(in kilobytes)? ➢ CS-2.1: How many programming languages
does the project involve? ➢ CS-2.2: How many watchers does
the project have?

Documentation (D) ➢ D-1.1: Is there any kind of docu-
mentation for the tool? ➢ D-1.2: Is it sufficient for setting
up all of the tool’s components? ➢ D-1.3: Is it sufficient for
launching built-in attacks? ➢ D-1.4: Is it sufficient for creating
new custom attack procedures? ➢ D-1.5: Is it sufficient for
creating new attack chains? ➢ D-1.6: Does the documentation
describe how to interpret results of executed attack proce-
dures? ➢ D-2.1: Is the available documentation updated with
each release or other regular intervals? ➢ D-3.1: What is the
average length of chapters? ➢ D-3.2: What is the average tree
depth of chapters? ➢ D-4.1: What is the level of readability
of the documentation? ➢ D-4.2: What is the medium length
of sentences? ➢ D-4.3: How frequent are images or tables?
➢ D-5.1: If figures or tables are present, do they have an index
number and caption? ➢ D-5.2: Is the documentation organized
in accordance to the IEEE Standard for User Documentation?

Usability (U) ➢ U-1.1: Are executions of processes con-
sistent when tasks are performed multiple times? ➢ U-1.2:
Is it possible to change tasks before the last step without
starting the entire task from the beginning? ➢ U-1.3: Are
there recurring errors that affect tasks and processes? ➢ U-2.1:
Are interfaces and functions self-explanatory? ➢ U-2.2: Do
users receive direct feedback for important intermediate steps
and actions when using the tool? ➢ U-2.3: Is the appearance
of the tool appealing? ➢ U-3.1: Are there any interactive
help functions other than static explanations of interfaces and
functions? ➢ U-3.2: Are subsequent steps highlighted after
completing a task? ➢ U-3.3: Are there help and information
displays for buttons, functions, and interfaces? ➢ U-4.1: Does
the tool support the creation of attack templates? ➢ U-5.1: Do
all available user interfaces allow attack execution? ➢ U-5.2:
Do all available user interfaces allow configuration of pro-
cedures? ➢ U-5.3: Do all available user interfaces allow to

stop attack executions while they are still active? ➢ U-5.4:
Do all available user interfaces allow to access log data of
attack executions? ➢ U-5.5: Do all available user interfaces
allow to create or add new custom procedures? ➢ U-5.6: Do
all available user interfaces allow to create or add new attack
chains? ➢ U-6.1: Is it possible to customize the user interface?
➢ U-7.1: Is the average number of clicks or interactions
appropriate for common tasks? ➢ U-7.2: Can tasks be solved
by several approaches?

Features & Capabilities (FC) ➢ FC-1.1: Does the tool
use agents? ➢ FC-2.1: Are firewalls interrupting the work-
flow of the tool? ➢ FC-2.2: Are firewalls blocking the
connection between the command-and-control server and the
agent? ➢ FC-2.3: Is real-time antivirus interrupting remote
access on the target system? ➢ FC-2.4: Is real-time antivirus
interrupting the workflow of the tool? ➢ FC-2.5: Is real-time
antivirus interrupting the functionality of the agent? ➢ FC-2.6:
Is real-time antivirus deleting the script or interrupting its
functionality? ➢ FC-2.7: Is real-time antivirus interrupting
functionality of third party tools? ➢ FC-3.1: Does the tool
support cleanup of the target system after attack? ➢ FC-3.2:
Does cleanup occur immediately after the relevant attack
procedure? ➢ FC-3.3: Is cleanup of the relevant procedures
only possible at the end of an attack chain? ➢ FC-4.1: Does
the tool have logging capabilities? ➢ FC-4.2: Is every executed
procedure logged during an attack? ➢ FC-4.3: How is the
result of attacks presented? ➢ FC-5.1: Does the tool support
repeated execution of the same attack procedure but with
different parameters? ➢ FC-5.2: Are custom attack procedures
created and handled in the same way as predefined procedures?
➢ FC-5.3: Is it possible to resume incomplete attack proce-
dures or actions after restarting the app? ➢ FC-6.1: Is parallel
execution of attack procedures supported? ➢ FC-6.2: It is
possible to automatically execute several attack procedures one
after another? ➢ FC-7.1: Are the instructions provided within
the tool sufficient so that even a novice is able to execute
built-in attack procedures? ➢ FC-7.2: Are predefined attack
chains that consist of several attack procedures available in
the tool? ➢ FC-7.3: What range of tactics and techniques
from MITRE ATT&CK are covered by predefined attack
procedures? ➢ FC-7.4: Is the tool designed to support blue
teaming? ➢ FC-8.1: Is it possible to reconfigure predefined
attack procedures? ➢ FC-8.2: Is it possible to create new
custom attack chains? ➢ FC-8.3: Is it possible to create
new custom attack procedures through any of the interfaces?
➢ FC-8.4: Is it possible to add new custom attack procedures
as scripts? ➢ FC-9.1: Is it possible to stop and reconfigure
an ongoing attack at any point in time? ➢ FC-10.1: Are
special privileges required for the agents deployed on the target
systems? ➢ FC-10.2: Are special privileges required for any
of the scripts? ➢ FC-10.3: Are special privileges required for
any of the involved third party tools? ➢ FC-11.1: Does the tool
execute scripts on the endpoints? ➢ FC-11.2: Does the tool
support attack scripting? ➢ FC-11.3: Are attack procedures
implemented using scripts?

	Introduction
	Background & Related Work
	Methodology
	Overview
	Selection of adversary emulation tools
	Offline Tool Assessment
	Online Survey of User Requirements
	Feature Weights and Tool Ranking

	Adversary Emulation Tools
	Evaluation
	Technical Comparison
	Online Survey Results
	Participants
	Responses

	Weighted Results and Tool Ranking

	Discussion
	Conclusion
	References
	Appendix
	Questionnaire

