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 A B S T R A C T

Thanks to advancements in deep learning, speech generation systems now power a variety of real-world 
applications, such as text-to-speech for individuals with speech disorders, voice chatbots in call centers, 
cross-linguistic speech translation, etc. While these systems can autonomously generate human-like speech 
and replicate specific voices, they also pose risks when misused for malicious purposes. This motivates the 
research community to develop models for detecting synthesized speech (e.g., fake speech) generated by deep-
learning-based models, referred to as the Deepfake Speech Detection task. As the Deepfake Speech Detection 
task has emerged in recent years, there are not many survey papers proposed for this task. Additionally, 
existing surveys for the Deepfake Speech Detection task tend to summarize techniques used to construct a 
Deepfake Speech Detection system rather than providing a thorough analysis. This gap motivated us to conduct 
a comprehensive survey, providing a critical analysis of the challenges and developments in Deepfake Speech 
Detection (This work is a part of our projects of STARLIGHT, EUCINF, and DEFAME FAKEs). Our survey is 
innovatively structured, offering an in-depth analysis of current challenge competitions, public datasets, and 
the deep-learning techniques that provide enhanced solutions to address existing challenges in the field. From 
our analysis, we propose hypotheses on leveraging and combining specific deep learning techniques to improve 
the effectiveness of Deepfake Speech Detection systems. Beyond conducting a survey, we perform extensive 
experiments to validate these hypotheses and propose a highly competitive model for the task of Deepfake 
Speech Detection. Given the analysis and the experimental results, we finally indicate potential and promising 
research directions for the Deepfake Speech Detection task.
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1. Introduction

In recent years, remarkable advancements in deep learning tech-
niques and neural networks have revolutionized the field of generative 
AI. Today, core communication mediums such as audio, images, video, 
and text can be automatically generated and applied across various do-
mains, including chatbot systems (e.g., ChatGPT), film production [10], 
code generation [11], and audio synthesis [12,13], etc. However, AI-
synthesized data could pose a serious threat to social security when 
there is an increasing number of crimes related to leveraging the 
synthesized data [14]. To address this concern, the tasks, which are 
proposed for detecting synthesized data (e.g. fake data) generated from 
deep-learning-based methods, referred to as deepfake detection, have 
drawn much attention from the research community recently.

Focusing on human speech, this paper provides a comprehensive 
survey for the task of Deepfake Speech Detection (DSD). To this end, 
the milestones presenting the development progress of the DSD task 
are first presented in Fig.  1. As the figure shows, the earliest public 
dataset and challenge proposed for the DSD task was introduced in 
2015, focusing exclusively on the English language. Then, the first 
challenge for video deepfake detection (DFDC) [15] was introduced in 
2020. In subsequent years, datasets for the DSD task in Japanese [16], 
Korean [16], and Chinese [17] were introduced in 2021 and 2022, 
respectively. Recently, in 2024, multilingual datasets for the DSD task 
have been published, including MLAAD [18] for conversational speech 
and SVDD [19] for singing. Fig.  1 also highlights a growing number 
of papers, datasets, and challenge competitions for the DSD task from 
2021 to the present. This trend indicates that the DSD task has recently 
gained prominence and has attracted significant interest from the re-
search community. To further understand the DSD task, we summarized 
recent survey papers related to the DSD task in Table  1. As shown 
in the table, most of these surveys focus on detecting general fake 
data (e.g., images, videos, audio, or text), with audio or human speech 
typically being addressed only as a subsection or a part of the broader 
discussion [2,3,8]. Therefore, the main techniques, existing concerns, 
2 
and potential research for the DSD task have not been comprehensively 
analyzed in these papers. Among the survey papers, only two survey pa-
pers of [5,9] focus on the DSD task. However, as conventional surveys, 
these papers primarily summarize the technologies used to construct a 
DSD system such as datasets, feature extraction, classification model, 
loss functions, rather than providing a comprehensive analysis and 
highlighting existing concerns. For instance, while challenge competi-
tions proposed for the DSD task are very important in advancing the 
research community, their importance and various aspects have not 
been thoroughly analyzed (e.g., the number of research teams partici-
pating in these competitions and their results are interesting to analyze. 
Although this information reflects the level of interest in DSD within the 
research community, it has not been addressed in any existing survey 
papers). The second concern is related to public datasets proposed for 
the DSD task. In particular, the current survey papers do not adequately 
analyze the imbalance among (1) the number of utterances, (2) the 
AI-synthesized speech systems used to generate fake speech, and (3) 
the original/real human speech resource used to generate fake speech 
utterances. These key factors are essential in creating a high-quality 
DSD dataset for evaluating DSD models. Additionally, survey papers are 
at risk of becoming outdated as new datasets, techniques, and models 
continue to emerge. However, current surveys do not offer solutions 
for regularly updating essential information, such as details about 
challenge competitions, public datasets, and the top-performing models 
on specific datasets. Regarding technologies used to construct a DSD 
model such as feature extraction, classification model, or loss functions, 
current survey papers mainly summarize and then present conclusions 
rather than conducting experiments to provide strong evidence and 
validation.

The above concerns about the existing survey papers for the DSD 
task motivate and inspire us to provide a much more comprehensive 
survey in this paper. By addressing these concerns, we make the 
following main contributions:

• We provide a comprehensive analysis and then indicate concerns 
related to three main topics: The current challenge competition, 
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Fig. 1. The timeline of Deepfake Speech Detection (DSD) task.
Table 1
The main factors analyzed in survey papers.
 Papers Years Audio/Video Challenge Public Data Feature Classification Loss Training Proposed Continue 
 competitions datasets augmentation extraction models functions strategies models updating 
 [1] 2021 Yes/Yes No Yes No No Yes No No No No  
 [2] 2023 Yes/Yes No No No Yes Yes No No No No  
 [3] 2023 Yes/Yes No No No Yes Yes Yes No No No  
 [4] 2023 Yes/Yes No Yes No No Yes Yes Yes No No  
 [5] 2023 Yes/No Yes Yes No Yes Yes Yes Yes Yes No  
 [6] 2023 Yes/Yes No Yes No No Yes No No No No  
 [7] 2024 Yes/Yes No Yes No No Yes No No No No  
 [8] 2024 Yes/Yes No Yes No Yes Yes No No No No  
 [9] 2024 Yes/No No Yes Yes Yes Yes Yes Yes No No  
 Our survey 2024 Yes/No Yes Yes Yes Yes Yes Yes Yes Yes Yes  
the published datasets, and the deep-learning-based techniques 
used to develop a DSD system. Each topic consists of three main 
parts: ‘Analysis’, ‘Discussion’, and ‘Conclusion’. The ‘Analysis’ 
summarizes concrete information about the topic. The ‘Discus-
sion’ indicates concerns in each topic. Finally, the ‘Conclusion’ 
provides a summary of what we discussed and indicates some 
insights to further improve each topic.

• To solve the out-of-date issue of a survey paper, we set up a 
Github repository to update further challenge competitions, pub-
lic datasets, and top-performance systems. New versions of the 
paper are also continually updated on ‘https://arxiv.org’.

• More than a survey, we conduct extensive experiments to verify 
assumptions from the comprehensive analysis (i.e., different types 
of data augmentation, multiple input features, multiple network 
architectures, cross-dataset and cross-language evaluation, etc.), 
achieving a competitive DSD model. Given the analysis and ex-
perimental results, we indicate potential research directions for 
the DSD task.

The remainder of this paper is structured as follows: Section 2 discusses 
challenge competitions for the DSD task. Section 3 deeply analyses 
the public and benchmark datasets proposed for the DSD task. In 
Section 4, we summarize the key techniques for constructing the main 
components of a DSD system, including data augmentation, feature 
extraction, classification models, and loss functions Section 5 presents 
extensive experiments that validate the techniques described in Sec-
tion 4. Building on the analysis and results from the previous sections, 
Section 6 outlines our proposed research directions in the DSD task. 
Finally, Section 7 concludes the paper.

2. Challenge competitions proposed for deepfake speech detection

Analysis: Challenge competitions for the DSD task play a crucial 
role in motivating the research community. These competitions not 
only introduce new benchmark datasets but also host workshops where 
3 
Fig. 2. The number of competitions proposed for DSD task from 2015.

research teams can discuss their ideas and share their motivations. This 
environment encourages the community to publish more datasets and 
develop new techniques to address the DSD challenges. To analyze DSD 
challenge competitions, we first summarize all challenges in Table  2. 
Importantly, we will continually update information about future DSD 
challenge competitions in our GitHub repository.2

As Table  2 shows, most challenge competitions focus on detecting 
fake speech in a conversation except for the SVDD 2024 challenge [28] 
for the fake singing detection. All challenge competitions for fake 
speech detection in a conversation have been proposed for a sin-
gle language (i.e., While ADD 2022 and ADD 2023 are for Chinese, 
the others are proposed for English). Regarding the number of DSD 
challenge competitions, Fig.  2 shows that there has been an increase 
in recent years. This trend indicates that the DSD task has gained 
attention from the research community, particularly due to the rise 
of advanced deep learning systems capable of generating highly re-
alistic human-like speech, which poses significant security risks. DSD 

2 https://github.com/AI-ResearchGroup/A-Comprehensive-Survey-with-
Critical-Analysis-for-Deepfake-Speech-Detection

https://arxiv.org
https://github.com/AI-ResearchGroup/A-Comprehensive-Survey-with-Critical-Analysis-for-Deepfake-Speech-Detection
https://github.com/AI-ResearchGroup/A-Comprehensive-Survey-with-Critical-Analysis-for-Deepfake-Speech-Detection


L. Pham et al. Computer Science Review 57 (2025) 100757 
Table 2
The challenge competitions proposed for Deepfake Speech Detection.
 Challenge competitions Years Data types Languages Public labels Audio Visual Team no. Top-1  
 (number) (train & dev/test) system  
 ASVspoof 2015 [20] 2015 Speech English Yes/Yes Yes No 16 Ensemble Model 
 ASVspoof 2019 (LA Task) [21] 2019 Speech English Yes/Yes Yes No 48 Ensemble Model 
 DFDC [15] 2020 Speech English Yes/Yes Yes Yes 2114 Ensemble Model 
 FTC [22] 2020 Speech English No/No Yes No n/a n/a  
 ASVspoof 2021 (LA Task) [23] 2021 Speech English Yes/Yes Yes No 41 Ensemble Model 
 ASVspoof 2021 (DF Task) [23] 2021 Speech English Yes/Yes Yes No 33 Ensemble Model 
 ADD 2022 Track 1 [17] 2022 Speech Chinese Yes/Yes Yes No 48 Single Model  
 ADD 2022 Track 2 [17] 2022 Speech Chinese Yes/Yes Yes No 27 Single Model  
 ADD 2022 Track 3.2 [17] 2022 Speech Chinese Yes/Yes Yes No 33 Single Model  
 ADD 2023 Track 1.2 [24] 2023 Speech Chinese No/No Yes No 49 Ensemble Model 
 ADD 2023 Track 2 [24] 2023 Speech Chinese No/No Yes No 16 Single Model  
 AV-Deepfake1M [25,26] 2024 Speech English Yes/No Yes Yes n/a n/a  
 ASVspoof 2024 [27] 2024 Speech English Yes/No Yes No 53 Ensemble Model 
 SVDD 2024 [19,28] 2024 Singing Multilanguages (6) Yes/No Yes No 47 Ensemble Model 
challenge competitions, which explore fake speech in a conversation, 
can be separated into two groups. The first group is proposed for only 
audio [17,20–24,27,29]. Meanwhile, the second group is for video in 
which a fake video is identified by fake audio, fake image, or both fake 
audio and image [15,26]. This indicates that DSD is not only treated as 
an individual task independently but also considered as a sub-task in 
multimodal systems.

It is also evident that the second group, which focuses on fake video 
detection, has attracted significantly more research teams (e.g., 2114 
teams in the DFDC challenge [15]) compared to the first group (e.g., the 
largest team count was 74 in the ASVspoof 2021 challenge [23]). This 
provides an insight that fake video detection is a more compelling task, 
drawing greater interest and participation from research teams. Regard-
ing top-1 systems in these challenge competitions, they leveraged the 
ensemble techniques which combine a wide range of input features or 
multiple models (i.e., most submitted systems mainly use deep learning 
based models).

Discussion: Given the recent analysis of challenge competitions 
proposed for the DSD task, some concerns can be indicated. Firstly, the 
DSD task has drawn attention from the research community and is now 
recognized as one of the critical components in a complex system of 
deepfake detection. However, most current challenge competitions are 
limited to single languages, such as Chinese or English, and primarily 
focus on detecting fake speech within conversations. Secondly, some 
challenge competitions have not published datasets for different rea-
sons. For example, FTC [22] was organized by the US government, and 
the top-performing systems are used by the US government. Similarly, 
ADD 2023 [24] only provides the dataset for the teams that attended 
during the competition. These limitations hinder research motivation 
and further development once the challenges conclude. Third, it is 
recognized that fake speech utterances are mainly generated from 
deep-learning-based speech generation systems. Therefore, if selected 
deep-learning-based speech generators are not general or up-to-date, 
this significantly affects the effectiveness and quality of the challenge 
competition. This highlights the need for collaboration between two 
tasks of deep-learning-based speech generation and detection within 
the same challenge competition. Competitions like ASVspoof 2024 [27] 
and ADD 2022 [17] have addressed this by not only publishing datasets 
but also presenting a two-phase or two-track challenge in which the 
first phase/track is for Deepfake Speech Generation and the second 
one is for Deepfake Speech Detection. Finally, regarding techniques 
used in these competitions, ensemble models have become widely 
leveraged to enhance performance in many challenge competitions, 
enabling research teams to develop top-performing systems. However, 
this approach has several drawbacks, including limited interpretability, 
increased system complexity, high training costs, and concerns related 
to power consumption and green AI. Therefore, different aspects of 
using deep-learning-based models such as using a single model, low 
complexity, or real-time inference can be regarded as main constraints 
4 
Fig. 3. The number of public datasets proposed for DSD task from 2015.

in challenge competitions for the DSD task in the future. For exam-
ple, the DCASE challenge Task 1 [30] for Sound Scene Classification 
requires the submitted systems to obey two constraints: (1) not larger 
than 128 K parameters and (2) not larger than 30 MMAC units.

Conclusion: We have just presented and highlighted the important 
role of DSD challenge competitions which significantly motivate the 
DSD research community. We also provided a comprehensive analy-
sis and indicated some existing concerns: (1) the limited number of 
DSD challenges, particularly for multiple languages; (2) The lack of 
collaboration between deepfake speech generation and deepfake speech 
detection; and (3) The absence of real-time or low-complexity require-
ments for DSD systems in existing challenges. To continue updating 
new challenge competitions in the future and evaluate the existing 
concerns, we created a Github project.3 The GitHub repository serves 
as a reference for up-to-date information on DSD-related challenge 
competitions and current concerns. In other words, it complements our 
survey by ensuring ongoing updates related to the DSD task.

3. Public datasets proposed for deepfake speech detection

Analysis: Public datasets proposed for the DSD task, including those 
introduced through challenge competitions, play a crucial role in moti-
vating the research community to develop and evaluate DSD systems. 
In this section, we present a summary of the public and benchmark 
datasets for the DSD task, as shown in Table  3. These datasets have 
been introduced through various challenge competitions and published 
papers.

As illustrated in Fig.  3, the number of public datasets for the DSD 
task has grown significantly in recent years. Most of these datasets 
include both clean and noisy speech. Notably, nearly all datasets have 

3 https://github.com/AI-ResearchGroup/A-Comprehensive-Survey-with-
Critical-Analysis-for-Deepfake-Speech-Detection

https://github.com/AI-ResearchGroup/A-Comprehensive-Survey-with-Critical-Analysis-for-Deepfake-Speech-Detection
https://github.com/AI-ResearchGroup/A-Comprehensive-Survey-with-Critical-Analysis-for-Deepfake-Speech-Detection
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Table 3
Public and benchmark datasets proposed for deepfake speech detection.
 Datasets Years Languages Speakers Utt. no. Fake speech Speech Real speech Utt. length (s) Evaluation  (Male/Female) (Real/Fake) generators condition resources metrics  
 ASVspoof 2015 [20] (audio) 2015 English 45/61 16,651/246,500 10 Clean Speaker Volunteers 1 to 2 EER   FoR [31] (audio) 2019 English 140 -/195541 7 Clean Kaggle [32] 2.35 Acc   ASVspoof 2019 (LA task) [21] (audio) 2019 English 46/61 12,483/108,978 19 Clean Speaker Volunteers n/a EER   DFDC [15] (video) 2020 English 3426 128,154/104,500 1 Clean & Noisy Speaker Volunteers 68.8 Pre., Rec.   ASVspoof 2021 (LA task) [23] (audio) 2021 English 21/27 18,452/163,114 13 Clean & Noisy Speaker Volunteers n/a EER   ASVspoof 2021 (DF task) [23] (audio) 2021 English 21/27 22,617/589,212 100+ Clean & Noisy Speaker Volunteers n/a EER   WaveFake [16] (audio) 2021 English, 0/2 -/117,985 6 Clean LJSPEECH [33], 6/4.8 EER   Japanese JSUT [34]   KoDF [35] (video) 2021 Korean 198/205 62,116/175,776 2 Clean Speaker Volunteers 90/15 (real/fake) Acc, AuC   ADD 2022 [17] 2022 Chinese 40/40 3012/24072 2 Clean AISHELL-3 [36] 1 to 10 EER   FakeAVCeleb [37] (video) 2022 English 250/250 570/25,000 2 Clean & Noisy Vox-Celeb2 [38] 7 AuC   In-the-Wild [39] (video) 2022 English 58 19963/11816 0 Clean & Noisy Self-collected 4.3 EER   LAV-DF [40] (video) 2022 English 153 36,431/99,873 1 Clean & Noisy Vox-Celeb2 [38] 3 to 20 AP   Voc.v [41] (audio) 2023 English 46/61 14,250/41,280 5 Clean & Noisy ASVspoof 2019 n/a EER   PartialSpoof [42] (audio) 2023 English 46/61 12,483/108,978 19 Clean & Noisy ASVspoof 2019 0.2 to 6.4 EER   LibriSeVoc [43] (audio) 2023 English n/a 13,201/79,206 6 Clean & Noisy Librispeech 5 to 34 EER   AV-Deepfake1M [25,26] (video) 2023 English 2,068 286,721/860,039 2 Clean & Noisy Voxceleb2 [38] 5 to 35 Acc, AuC   CFAD [44] (audio) 2024 Chinese 1023 -/374,000 11 Clean & Noisy AISHELL1-3 [45,46] n/a EER   & Codecs MAGICDATA [47]   MLAAD [48] (audio) 2024 Multilanguages (23) n/a -/76,000 54 Clean & Noisy M-AILABS [18] n/a Acc   ASVspoof 2024 [27] (audio) 2024 English n/a 188,819/815,262 28 Clean & Noisy MLS [49] n/a EER   SVDD2024 [19] (audio) 2024 Mutilanguages (6) 59 12,169/72,235 48 Clean Mandarin, n/a EER   Japanese  
Table 4
Deepfake speech generation systems used in public DSD datasets (TTS: Text to Speech, VC: Voice Conversion, AT: Adversarial attach using Malafide or Malocopula).
 Datasets Year No. of TTS/VC/AT Deepfake speech generation systems  
 ASVspoof 2015 [20] 2015 7 VC, 3 TTS VC-01 [50,51], VC-02 [52], TTS-01 [53], TTS-02 [53], VC-03 [54],  
 VC-04 [55], VC-05 [55], VC-06 [56], VC-07 [57], TTS-03 [58]  
 FoR [31] 2019 7 TTS Deep Voice 3, Amazon AWS Polly, Baidu TTS, Google Traditional TTS,  
 Google Cloud TTS, Google Wavenet TTS, Microsoft Azure TTS  
 ASVspoof 2019 (LA task) [21] 2019 8 VC, 11 TTS TTS-01 [59], TTS-02 [59,60], TTS-03 [61], TTS-04 [62], VC-01 [63], VC-02 [64],  
 TTS-05 [61,65], TTS-06 [59,66], TTS-07 [67,68], TTS-08 [69,70], TTS-09 [69–71],  
 TTS-10 [72], VC-03+TTS [73], VC-04+TTS [74,75], VC-05+TTS [74,75], TTS-11 [62],  
 VC-06 [76,77], VC-07 [78–80], VC-08 [64]  
 DFDC [15] 2020 1 TTS TTS Skins voice conversion [81]  
 KoDF [35] 2021 2 TTS ATFHP [82] and Wav2Lip [83]  
 ASVspoof 2021 (LA task) [23] 2021 13 TTS/VC Reuse ASVspoof 2019  
 ASVspoof 2021 (DF task) [23] 2021 100 TTS/VC Vocoders [84]  
 WaveFake [16] 2021 6 TTS MelGAN [85], FB-MelGAN [85], HiFi-GAN [86], WaveGlow [87], PWG [88], MB-MelGAN 

[85]
 

 FakeAVCeleb [37] 2022 2 TTS SV2TTS [89,90]  
 In-the-Wild [39] 2022 n/a n/a  
 LAV-DF [40] 2022 1 TTS SV2TTS [89]  
 Voc.v [41] 2023 5 TTS HiFi-GAN [86], MB-MelGAN [85], WaveGlow [87], PWG [88], Hn-NSF [91]  
 PartialSpoof [42] 2023 21 TTS/VC Reuse ASVspoof 2019  
 LibriSeVoc [43] 2023 6 TTS/VC WaveNet [72], WaveRNN [92], MelGAN [85], Parallel WaveGAn [93], WaveGrad [94], 

DiffWave [95]
 

 AV-Deepfake1M [25,26] 2023 2 TTS VITS [96], YoursTTS [97]  
 CFAD [44] 2024 11 TTS STRAIGHT [98], Griffin-Lim [99], LPCNet [100], WaveNet [72], PWG [88], HiFi-GAN 

[101],
 

 MB-MelGAN [85], MelGAN [85], WORLD [102], FastSpeech [103], Tacotron-HifiGAN [104] 
 MLAAD [48] 2024 54 TTS Bark, Capacitron, FastPitch, GlowTTS, Griffin Lim, Jenny, NeuralHMM, Overflow,  
 Parler TTS, Speech5, Tacotron DDC, Tacotron2, Tacotron2 DCA, Tacotron2 DH, 

Tcotron2-DDC,
 

 Tortoise, VITS, VITS Neon, VITS-MMS, XTTS v1.1, XTTS v2  
 ASVspoof 2024 [27] 2024 15 TTS, 6 VC, 7 AT TTS-01 [105], TTS-02 [106], TTS-03 [107], TTS-04 [108], TTS-05 [109], TTS-06[110], 

TTS-07[111],
 

 TTS-08(self-develop), VC-01[112], TTS-09[113], VC-02 [114], VC-03(self-develop), TTS-10 
[115],

 

 AT-01 (Malafide+TTS-10 [115]), TTS-11 [116], AT-02(self-Develop), TTS-12 [117], TTS-13 
[118],

 

 AT-03(Malafide+TTS [119]), VC-04(self-develop), VC-05 [120], VC-06(add noise),  
 AT-04(Malacopula+VC-06), TTS-14 [121], TTS-15 [122], AT-05(Malacopula+AT-01),  
 AT-06(Malacopula+TTS-13 [118]), AT-07(Malacopula+VC-05 [120])  
5 
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Fig. 4. The high-level architecture of Deepfake Speech Detection (DSD) systems.
been designed for English, with WaveFake [16], KoDF [82], and ADD 
2022 [17] being the exceptions, focusing on Japanese, Korean, and Chi-
nese languages, respectively. Recently, the first multilingual datasets 
for the DSD task were introduced in [18,19]. The MLAAD dataset [18] 
provides fake speech in conversations generated in 23 widely spoken 
languages. Meanwhile, the SVDD dataset [19] was proposed for deep-
fake singing detection with six different languages (i.e., the Chinese 
songs are the majority).

Most deepfake datasets are generated from one of three gener-
ator techniques: Text-to-Speech (TTS), Voice Conversion (VC), and 
Adversarial Attacks (AT), as shown in Table  4. Notably, ASVspoof 
2024 [27] is the first dataset that uses AT systems to generate fake 
speech. While TTS systems generate fake speech from text, VC systems 
generate fake speech from real speech (e.g., audio). To mimic the target 
speakers, TTS and VC systems attempt to explore the audio embed-
dings extracted from the target speakers. These audio embeddings are 
treated as a part of the feature map in the entire network architecture 
in TTS and VC systems. Regarding AT systems, they mainly apply 
Malafide [123] and Malocopula [124] methods to generate fake speech. 
Both Malafide [123] and Malocopula [124] methods involve leveraging 
filter banks. Malafide [123] applies multiple techniques of linear time-
invariant (LTI), non-causal filter, and the coefficients (e.g., tap weights) 
to create TTS/VC-based fake speech that mimics the target speaker. 
Meanwhile, Malocopula [124] combines both linear filter and non-
linear filter (e.g., one-dimensional convolutional layer) to replicate the 
target speaker’s voice.

To compare among DSD datasets, we analyze three different aspects: 
(1) the number of fake utterances; (2) the AI-synthesized speech sys-
tems used to generate fake speech; and (3) the original/real human 
speech resource used to generate fake speech utterances. As Table  3 
shows, most datasets present lower than 300,000 utterances of fake 
speech, except ASVspoof 2021 (DF Task) [23], ASVspoof 2024 [27], 
and AV-Deepfake1M dataset [25,26] with 58,9212, 81,5262, and
86,0039 fake utterances, respectively. Although DFDC [15,81] and AV-
Deepfake1M dataset [25,26] present a large number of fake data, this 
was proposed for video in which audio may not be fake. Additionally, 
these fake utterances were generated from only a few deep-learning-
based speech-generation systems. Indeed, two TTS models of VITS [96], 
YoursTTS [97] and one TTS model [81] were used to generate fake 
speech in some datasets such as DFDC [15] and AV-Deepfake1M [25,
26], respectively. On the other hand, the ASVspoof 2021 (DF Eva) 
dataset [23] contains 589,212 fake utterances, generated using over 
100 voice conversion (VC) and text-to-speech (TTS) systems. To catch 
up with state-of-the-art deepfake speech generators, Table  4 presents 
the architectures and resources of deepfake speech generators. The 
table indicates that the ASVspoofing series show up-to-date and diverse 
deepfake speech generators compared to the others. In terms of the 
original human speech resources, most DSD datasets are based on 
recordings from a limited number of speaker volunteers. For example, 
although the ASVspoof 2021 (DF Eva) dataset [23] used 100 VC and 
TTS systems to create fake utterances, the real speech resource is from 
107 speaker volunteers. Some DSD datasets of AV-Deepfake1M [25,26], 
CFAD [44] leveraged the large and available human speech datasets 
to generate fake utterances such as Voxceleb2 [38], AISHELLI-3 [36], 
MAGICDATA [47]. However, these datasets use a limited number of 
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speech generators (e.g., 2 TTS and 11 TTS for AV-Deepfake1M [25,26] 
and CFAD [44], respectively).

Regarding metrics evaluation, all datasets proposed for the DSD task 
come together with a baseline and metrics for the evaluation. Regarding 
the baseline systems, all baselines leveraged convolutional neural net-
work (CNN) based architectures. These baselines are evaluated mainly 
by the Equal Error Rate (EER) metric. Some datasets such as KoDF [35], 
AV-Deepfake1M [25,26], MLAAD [48], FoR [31] used Accuracy (Acc.) 
and Area Under The Curve (AUC) metrics instead of EER.

Discussion : Given the analysis of benchmark datasets proposed for 
the DSD task, some existing issues can be outlined. These include the 
limited number of datasets available for multiple languages and the 
imbalance of several aspects within existing datasets.

Firstly, more public and benchmark datasets have been proposed 
for the DSD task. However, there is only one multilingual dataset 
currently. The lack of multilingual datasets for DSD tasks presents 
several challenges for current model development and evaluation such 
as performance degradation on cross-language settings that leads to 
a limited applicability in real-world applications. This motivates the 
research community to propose more datasets for multiple languages 
to enhance model’s capability in real-life settings. Secondly, another 
limitation of currently available datasets is that they focus on a limited 
number of DSD use cases. In particular, two use cases should be clearly 
distinguished: (1) detecting deepfakes without access to the original 
voice, and (2) detecting deepfakes with access to the original voice. 
The current datasets are designed for addressing the former but not the 
latter use case as they lack authentic-cloned speech pairing. Another 
highly relevant use case that should be addressed in the future is
partially deepfake speech whereby just a part of the speech is being 
replaced by a synthetic component. Thirdly, we highlight an imbalance 
among DSD datasets regarding three aspects: (1) the number of fake 
utterances; (2) the AI-synthesized speech systems used to generate fake 
speech; and (3) the original/real human speech resource used to gener-
ate fake speech utterances. The imbalance can be clearly described in 
Fig.  5.

• The number of utterances: The quantity of utterances within 
the datasets is not uniform. Some datasets may contain a large 
number of samples, while others have significantly fewer. A small 
number of real or fake utterances within datasets (e.g., Fake
AVCeleb [37], ADD [17]) limits the model’s exposure to a wide 
variety of speech patterns and scenarios, affecting the detection 
robustness and generalization on new, unseen data. Additionally, 
a controlled ratio between real and fake samples created within 
datasets (e.g., ASVspoof 2024 [27], ASVsproof 2021 [23]) also 
ensure diversity of fake techniques and avoid overfitting on the 
fake data, especially if the fake samples are generated using sim-
ilar techniques. Therefore, maintaining a moderately controlled 
ratio between real and fake utterances, along with a diverse range 
of these utterances, is essential for future dataset development.

• Deepfake speech generation systems: The variety of deep-
learning-based systems used to generate deepfake speech is an-
other area of concern. As Table  4 shows, some of datasets such as 
MLAAD [48], ASVspoof 2021(DF task) [23], ASVspoof 2024 [27] 
present more than 20 systems (e.g., TTS, VC, or AT systems). 
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Table 5
Individual DSD systems exploring raw audio.
 Systems Years Datasets Features Data augmentation Models Loss functions   (Distoration/Compression)  
 [125] 2021 ASVspoof 2021 (LA Task) Raw Audio Comp.: MP3, ACC, OGG RawNet2 Focal loss  
 [126] 2021 ASVspoof 2021 (LA&DF Tasks) Raw Audio Comp.: G.723, G.726, RawNet2 Cross Entropy (CE) 
 GSM, opus, speex, mp2,   ogg, tta, wma, acc, ra  
 [127] 2021 ASVspoof 2019 (LA Task) Raw Audio Dis.: Channel Drop, SinC+CRNN MSE Loss   Frequency masking  
 [128] 2021 ASVspoof 2021 (LA Task) Raw Audio Comp.: mp3, mp2, m4a, m4r, RawNet2 OC-Softmax  
 opus, ogg, mov, PCM 𝜇-law,   PCM a-law, speex, ilbc,   G.729, GSM, G.722, AMR  
 [129] 2021 ASVspoof 2021 (LA&DF Tasks) Raw Audio Dis.: Time-wise, RawNet2 Cross Entropy   Silence Strimming  
 [130] 2021 ASVspoof 2021 (LA&DF Tasks) Raw Audio n/a Encoder: SinC+Residual WCE Loss   Decoder: Graph Attention Network  
 [131] 2021 ASVspoof 2021 (LA&DF Tasks) Raw Audio Dis.: Mixup, FIR filters Sinc+CNN WCE Loss  
 [132] 2021 ASVspoof 2021 (LA Task) Raw Audio Comp.: G.711-alaw,G.722, SinC+RawNet2 AM-softmax  
 GSM-FR, and G.729  
 [39] 2022 ASVspoof 2019 (LA Task) Raw Audio n/a RawNet2, RawNet-GAT, CRNNSpoof Cross Entropy   In The Wild  
 [133] 2022 ASVspoof 2019 (LA Task) Raw Audio n/a Encoder: RawNet2 WCE Loss   Decoder: Graph Attention Neural Network  
 [134] 2022 ASVspoof 2021 (LA&DF Tasks) Raw Audio Dis.: RawBoost [135] Encoder: Sinc+CNN, Wave2Vec2.0+CNN WCE loss   Decoder: Graph Attention network  
 [136] 2023 ASVspoof 2019 (LA Task), Raw Audio Dis.: Stereo speech Encoder: SinC+ResNet AM-softmax   ASVspoof 2021 (LA&DF Tasks) Decoder: Graph Attention network  
 [137] 2023 ASVspoof 2019 (LA Task) Raw Audio n/a Encoder: Wav2vec2.0 [138], HuBERT [139] Cross Entropy   Decoder: LCNN-LSTM-Graph Attention  
 [140] 2023 ADD 2023 Raw Audio Dis.: Add noise, mix utterance Encoder: Wav2Vec2.0 Cross Entropy   Decoder: ECAPA-TDNN  
 [141] 2022 ASVspoof 2019 (LA Task), Raw Audio n/a Encoder: ECAPA-TDNN, RawNet Cross Entropy,   Decoder: Linear layers Triplet loss,   AM-Softmax  
 [142] 2023 ADD 2023 Raw Audio Dis.:Add noise, vibration, mixup Encoder: Wav2Vec2.0 A-Softmax,   Decoder:CNN-Transformer Triplet loss,   Adversial loss  
 [143] 2023 ASVspoof 2019 (LA Task), Raw Audio n/a Encoder: Wav2Vec2.0 [138] Triplet, BCE,   WaveFake, Decoder: LCNN-Transformer Adversarial loss   FakeAVCeleb  
 [144] 2024 ASVspoof 2019 (LA Task), Raw Audio n/a SincNet/LEAF+ResNet Cross Entropy   ASVspoof 2021 (LA&DF Tasks),   In The Wild [39]  
 [144] 2024 ASVspoof 2021 (LA&DF Tasks) Raw Audio n/a Encoder: EnCodec [145], AudioDec [146], Cross Entropy   AudioMAE [147], HuBERT [139],   WavLM [148], Whisper [149]   Decoder: ResNet  
 [150] 2024 ASVspoof 2019 (LA Task), Raw Audio Dis.: Add noise, overlapping Encoder: WavLM [148], Cross Entropy   ASVspoof 2021 (LA&DF Tasks) Decoder: Multi-Fusion Attentive  
 [151] 2024 ASVspoof 2019 (LA Task), Raw Audio n/a Encoder: Wav2vec2.0 [138], BEATS [152], n/a   ASVspoof 2021 (LA Task), LationCLAP [153], AudioCLIP [154],   In The Wild Decoder: Similarity Score Measurement  
Fig. 5. The imbalance among the fake speech utterances, the fake speech generators, 
and the real speaker volunteers in benchmark DSD datasets.

Among these datasets, ASVspoof 2021 (DF Task) [23] and
ASVspoof 2024 [27] present diverse TTS, VC, and AT systems. 
In particular, while more than 100 TTS and VC are for ASVspoof 
2021 (DF Task) [23], 28 TTS, VC, and AT are used in ASVspoof 
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2024 [27]. Although MLAAD [48] has been the unique multiple-
language dataset currently, fake speech in this dataset was only 
generated from TTS systems. Overall, some datasets may pre-
dominantly feature speech synthesized by a few specific deep-
learning-based generators or techniques, while others might in-
clude a broader range. Datasets generated from a limited number 
of deep-learning-based generators possibly lead to over-special
ization, reducing the model’s ability to detect deepfakes generated 
by other systems and affecting the performance in real-world 
scenarios. Therefore, this imbalance motivates the research com-
munity to create more diverse datasets that include a wide range 
of AI-synthesized speech methods.

• Real human speech resource: The source of real voice plays 
a crucial role in shaping the effectiveness, generalization, and 
ethical aspects of deepfake detection models. As highlighted in 
Table  4, there are two main sources for building DSD datasets: 
voice samples from volunteer speakers or from existing datasets. 
Voice samples from volunteers offer greater control over diver-
sity (if managed thoroughly) and address ethical concerns, as 
they are collected with explicitly informed consent. However, 
this approach can be resource-intensive in terms of time and 
cost and may not scale efficiently. In contrast, utilizing existing 
human speech datasets offers better accessibility and scalability. 
However, it may introduce biases toward certain groups, such 
as public figures, reducing diversity in real-world applications 
and especially raising significant ethical issues. These problems 
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Table 6
Individual DSD systems exploring spectrogram based features.
 Systems Years Datasets Data augmentation Features Models Loss functions   (Distoration/Compression)  
 [155] 2020 ASVspoof 2019 (LA Task) Dis.: Add noise, reverberation, LFCC ResNet LMC loss,   FreqAugment Cross Entropy  
 [125] 2021 ASVspoof 2021 (LA Task) Comp.: MP3, ACC, OGG LFCC LCNN Focal loss,  
 MEL TDNN Focal, Cross Entropy 
 [156] 2021 ASVspoof 2021 (LA Task) n/a LFB, SPEC, LFCC LCNN, LCNN-LSTM Cross Entropy, MSE  
 [157] 2021 ASVspoof 2021 (LA Task) Comp.: MP3, ACC, LFCC ECAPA-TDNN Focal loss  
 landlie, cellular, VoiP  
 [126] 2021 ASVspoof 2021 (LA&DF Tasks) Comp.: G.723, G.726, GSM, CQT LCNN Cross Entropy  
 opus, speex, mp2, ogg, CQCC, LFCC GMM   tta, wma, acc, ra LFCC GMM, LCNN  
 [128] 2021 ASVspoof 2021 (LA Task) Comp.: G.723, G.726, GSM PSCC, LFCC, Resnet18, TDNN OC-Softmax  
 opus, speex, mp2, ogg, DCT-DFT, LLFB   tta, wma, acc, ra  
 [129] 2021 ASVspoof 2021 (LA&DF Tasks) Dis.: Time-wise, CQT ResNet, CNN, LSTM Cross Entropy   Silence Strimming  
 [131] 2021 ASVspoof 2021 (LA&DF Tasks) Dis.: Mixup, FIR filters MSTFT ResNet, LCNN Central loss  
 [158] 2021 ASVspoof 2019, 2021 (LA Task) n/a LFCCs, logLFBs, Squeeze CNN Cross Entropy,   GM-LFBs, A-Softmax loss   Textrograms MLC loss  
 [159] 2021 ASVspoof 2021 (LA&DF Tasks) Comp.: MP3, AAC, LFCCs ECAPA-TDNN, ResNet OC-Softmax,  
 Landlie, cellular; P2SGrad losses   Dis.: device impulse  
 [132] 2021 ASVspoof 2021 (LA Task) Comp.: G.711-alaw, G.722, LFCCs LCNN AM-softmax  
 GSM-FR, and G.729  
 [160] 2021 ASVspoof 2019 (LA Tasks) n/a LFCC ResNet OC-Softmax  
 [161] 2021 ASVspoof 2019 (LA Tasks) n/a LFCC LSTM-SECNN MSE loss  
 [162] 2021 ASVspoof 2019 (LA Tasks) Dis.: SpecAug log-Mel ResNet n/a  
 [39] 2022 ASVspoof 2019 (LA Task), n/a CQT, log-STFT LCNN, CNN-LSTM, Inception, Cross Entropy   In the Wild MEL ResNet, Transformer  
 [163] 2022 ADD 2022 Dis.: Add noise/music/babele, LFCC ResNet Focal loss   Reverb, Modify Volume, SpecAug;   Comp.: MP3, OGG, AAC, OPUS  
 [164] 2023 ASVspoof 2019 (LA Task), n/a LFCC LCNN-LSTM Cross Entropy,   WaveFake, FakeAVCeleb Adversarial loss,   Triplet loss  
 [165] 2023 ASVspoof 2019 (LA Task) Comp.: FLAC MEL Finetune SSAT Transformer Cross Entropy  
 [142] 2023 ASVspoof 2019 (LA Task) n/a STFT+F0 sub-bands SENet34 A-Softmax,   KL loss  
 [166] 2023 ASVspoof 2019 (LA Task) n/a LFCC, CQT Teacher-Student OC-Softmax,   (ResNet, LCNN) MSE loss  
 [144] 2024 ASVspoof 2019 (LA Task), n/a CQT, MEL, ResNet Cross Entropy   logSpec, LFCC  
 [167] 2024 ASVspoof 2019 (LA Task), Dis.: SpecAugment FBank ECAPA-TDNN AM-Softmax   ASVspoof 2021 (LA&DF Tasks)  
 [168] 2024 ASVspoof 2019 (LA Task), Dis.: RawBoost [135] log-MEL Encoder: CNN, ResNet, Cross Entropy,   ASVspoof 2021 (LA&DF Tasks) SE-ResNet Contrastive loss   Decoder: GAN networks [169]  
 [170] 2024 ASVspoof 2019 (LA Task) Dis.: Oversampling STFT Encoder: Transformer Cross Entropy   Decoder: Transformer  
 [171] 2024 ASVspoof 2019 (LA Task), Dis.: RawBoost [135] MEL Finetune Wav2Vec2.0 Cross Entropy,   ASVspoof 2021 (LA&DF Tasks), (XLSR-53 [138]) Contrastive loss   FakeAVCeleb, WaveFake  
 [172] 2024 ASVspoof 2019 (LA Task) Comp.: aac, flac, mp3, m4a LFCC Encoder: Transformer OC-Softmax  
 ASVspoof 2021 (DF Task) wma, ogg, wa Decoder: Transformer   Dis.: Speed perturbation, SpecAug  
suggest other balanced approaches to build DSD datasets that 
consider both diversity and scalability in the future.

Based on the above discussions and statistic information in Fig.  5, it 
can be concluded that ASVspoof 2019 (LA task) [21], ASVspoof 2021 
(LA & DF tasks) [23], ASVspoof 2024 [27] are among the most balanced 
datasets at the writing time. Additionally, the MLAAD [48] is the 
largest and most suitable DSD dataset for evaluating cross-languages. 
The discussions on existing datasets for the DSD task underscore the 
importance of future efforts by the research community to release 
comprehensive, multilingual, and balanced datasets. Also, Fig.  5 em-
phasizes the significant costs and workload involved in creating such 
datasets, while ensuring compliance with essential security protocols 
for speaker volunteers.

Conclusion: We have just presented the important role of public 
datasets proposed for the DSD task, providing a comprehensive analysis 
and indicating the existing issues. The study shows different aspects 
that are not mentioned in the other surveys: (1) the original resource 
of real human speech; (2) the overview of deep learning-based systems 
8 
used to generate fake speech; (3) not only fake speech but also fake 
video datasets were mentioned; (4) the imbalances and other concerns 
in current public DSD datasets, along with their impact on model 
performance and practical applicability. Similar to the challenges for 
the DSD task, we will continue to update new DSD datasets via our 
GitHub repository4 in the future. This ensures the ongoing relevance of 
the survey and provides an up-to-date resource for DSD datasets.

4. Overview on proposed systems for deepfake speech detection

To conduct a comprehensive analysis of DSD systems, we first re-
view state-of-the-art research papers addressing the DSD task. Notably, 
a large number of the selected papers are from high-reputation journals 
and conferences such as INTERSPEECH (48 papers) and ICASSP (29 
papers) in recent years. Then, we categorize these DSD systems into 

4 https://github.com/AI-ResearchGroup/A-Comprehensive-Survey-with-
Critical-Analysis-for-Deepfake-Speech-Detection

https://github.com/AI-ResearchGroup/A-Comprehensive-Survey-with-Critical-Analysis-for-Deepfake-Speech-Detection
https://github.com/AI-ResearchGroup/A-Comprehensive-Survey-with-Critical-Analysis-for-Deepfake-Speech-Detection
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Table 7
DSD systems leveraging ensemble techniques to enhance the performance.
 Systems Years Datasets Features Data augmentation Models Loss functions Ensemble methods   (Distoration/Compression)  
 [173] 2019 ASVspoof 2019 (LA Task), LFCC, CQT, FFT n/a LCNN A-Softmax Multiple inputs  
 [174] 2021 ASVspoof 2019 (LA Task) Raw Audio Dis.: Mixup ResNet Cross Entropy Multiple branches  
 [175] 2021 ASVspoof 2019 (LA Task) LSB, SPEC, LFCC n/a LCNN, LCNN-LSTM Cross Entropy, Multiple inputs, models  MSE for P2SGrad  
 [157] 2021 ASVspoof 2021 (LA&DF Tasks) LFCC Comp.: MP3, ACC, landlie, Variants of ECAPA-TDNN OC-Softmax Multiple models  
 cellular, VoiP  
 [176] 2021 ASVspoof 2021 (LA&DF Tasks) LFCC Dis.: Reverberation, add noise, ResNet, MLP, SWA large margin cosine, Multiple models   Comp.: mp3, mp4 Cross Entropy  
 [125] 2021 ASVspoof 2021 (LA Task) LFCC, MFCC, draw Comp.: MP3, ACC, OGG TDNN, RawNet2 Focal loss Multiple inputs, models 
 [126] 2021 ASVspoof 2021 (LA&DF Tasks) Draw, CQCC, LFCC Comp.: G.723, G.726, GMM, LCNN Cross Entropy Multiple inputs, models 
 GSM, opus, speex, mp2, ogg,   tta, wma, acc, ra  
 [128] 2021 ASVspoof 2021 (LA Task) Raw, PSCC, LFCC, Comp.: TODO set 1+2 ResNet18, GMM, OC-Softmax Multiple inputs, models 
 DCT-DFT, LLFB TDNN, RawNet2  
 [131] 2021 ASVspoof 2021 (LA Task) MSTFT Dis.: Mixup, FIR filters Resnet18, LCNN, Sinc+CNN Central loss Multiple inputs, models 
 [160] 2021 ASVspoof 2019 (LA Tasks) LFCC n/a ResNet OC-Softmax Multiple branches  
 [177] 2022 ASVspoof 2021 (LA&DF Tasks) LFCC Comp.: G.711-alaw, G.711-𝜇law GMM-MobileNet Cross Entropy Multiple branches  
 [178] 2022 ASVspoof 2021 (LA Task) CQT, MEL Dis.: Mixup, Frequency Masking BC-ResNet, FreqCNN n/a Multiple inputs, models 
 [179] 2022 ASVspoof 2019 (LA Tasks) LFCC n/a ResNet, LSTM OC-Softmax loss Multiple branches  
 [180] 2022 ASVspoof 2019, 2021 (LA Task) Log-Mel Dis.: Add music, noise, speech ResNet A-Softmax Multiple models   Reverb, pitch shift, SpecAug  
 [181] 2023 ASVspoof 2019, 2021 (LA Task) Raw Audio Dis.: Mixup, SpecAug ResNet Cross Entropy Multiple branches  
 [182] 2023 ADD 2023 Raw Audio, Log-Mel Dis.: Add noise, room inpulse, ResNet Cross Entropy, Multiple branches   mixup, speed shifting, KL loss   frequency masking  
 [137] 2023 ASVspoof 2019 (LA Task) Wav2vec, Duration, n/a LCNN-LSTM-GAP Cross Entropy Multiple inputs   Pronunciation Cross Entropy  
 [170] 2024 ASVspoof 2019 (LA Task) STFT phase, magnitude Dis.: Oversampling Transformer Entropy Multiple inputs  
 [183] 2024 ASVspoof 2019 (LA Task), LFCC, MPE n/a LCNN Cross Entropy Multiple inputs   In The Wild  
 [184] 2024 ASVspoof 2019 (LA Tasks) Raw Audio Dis.: Noise, Reverb, SpecAug, Encoders: Cross Entropy, Multiple models   ASVspoof 2021 (LA Task) Drop Frequencies Wav2vec-XLSR-ASR, MSE for P2SGrad   In-the-wild, MLAAD-EN Wav2vec-XLSR-SER  
 [144] 2024 ASVspoof 2019 (LA Task), Raw Audio n/a Encoders: XLS-R, Cross Entropy Multiple inputs, models  ASVspoof 2021 (LA&DF Tasks) Hubert, WavLM   Decoder: ResNet  
three groups based on input type, as detailed in Tables  5, 6, and 7. The 
first group, shown in Table  5, consists of DSD systems that directly pro-
cess audio utterances using single models. These models are based on a 
single machine learning algorithm or one specific network architecture. 
In the second group (Table  6), audio utterances are first transformed 
into spectrograms, representing temporal-frequency features. After this 
transformation, a single model is applied to analyze the data. The final 
group, shown in Table  7, features a diverse range of ensemble models 
that utilize various input features and combine multiple models.

Given the summary of DSD systems in Tables  5, 6, 7, we describe 
the high-level architecture of DSD systems as shown in Fig.  4. From 
Fig.  4, we then identify and analyze four main components that directly 
impact the DSD system performance: (1) Offline data augmentation, (2) 
Feature extraction, (3) Classification model, and (4) Loss function and 
Training strategy.

4.1. Offline data augmentation

Analysis: Data augmentation involves generating variations of the 
original data to increase the size of DSD datasets, which enhances the 
robustness and generalization capabilities of machine learning mod-
els. Since this step is applied to original audio utterances before the 
training process, it can be referred to as offline data augmentation. 
As shown in Tables  5, 6, and 7, offline data augmentation methods 
can be separated into two main groups, referred to as compression 
and distortion. The compression methods involve compress and de-
compress algorithms, mainly using audio codec techniques. A codec, 
short for ‘coder–decoder’, is a software used to compress and decom-
press digital audio. Among these methods, MP3, AAC, OGG, G.7XX, 
and Opus formats are commonly applied. Codec data augmentation 
helps simulate these real-world conditions through various compression 
schemes (e.g., phone calls, music streaming, or online video playback 
on applications such as Facebook, WhatsApp, etc.). Since different 
codecs use various compression and decompression algorithms, they 
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impact audio-related factors such as signal-to-noise ratio (SNR), high-
frequency formants, energy loss, sample rate, bit depth, and bitrate 
in distinct ways. This suggests that if there are subtle differences 
between real and fake speech in these aspects, generating diverse audio 
utterances using different codecs can be an effective approach for 
distinguishing between them.

Codec methods can be divided into three main categories based on 
the quality of audio data: uncompressed format, lossless compressed 
format, and lossy compressed format. Audio files with uncompressed 
formats such as WAV, AIFF, or PCM are large and contain all audio 
information recorded from an audio device. The lossless compressed 
formats such as FLAC, WMA, or ALAC only reduce unnecessary features 
of audio data and retain the almost original audio data. Meanwhile, 
lossy compressed formats such as MP3 or AAC significantly reduce 
audio features such as sample rate or bit depth to achieve low-volume 
audio files, which is suitable for streaming-based applications with 
real-time requirements.

The second distortion method modifies the raw audio by adding 
reverberation, background noise, and music [176,180,184] or by apply-
ing time-wise processing and silence streaming techniques [129], while 
preserving audio quality parameters such as sample rate, bit depth, and 
bit rate. The distortion method enforces classification models to learn 
distinct features between fake and real speech while these features 
are mixed by different noise resources. Notably, conventional data 
augmentation methods, such as pitch shifting and time stretching, 
which are commonly applied to raw audio in tasks like Acoustic Scene 
Classification [185], Speech Emotion Detection [186], and Speech Sep-
aration [187], have not been applied popularly to the DSD task [180,
182].

Discussion: Although compression methods and distortion methods 
present different approaches to generate more audio data, none of the 
papers has compared, analyzed, and indicated if one of the approaches 
is superior in the DSD task. Indeed, the statistical information in 
Fig.  6 indicates that the number of state-of-the-art DSD systems using 
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Fig. 6. The statistics of data augmentation methods obtained from Tables  5, 6, 7.

offline distortion augmentation and offline compression augmentation 
are equal.

Regarding codec-based data augmentation, little research has exam-
ined the differences among codec methods to identify which are most 
suitable for the DSD task in certain real-life scenarios. Indeed, social 
networks such as Facebook, Instagram, or YouTube and Internet-based 
communication tools such as WhatsApp, and WeChat (VoIP call) utilize 
specific and relevant codec methods. For example, YouTube shares 
audio with MP3 formats, while VoIP calls normally use G.722 audio 
format as the standard. However, many proposed DSD systems have 
been evaluated on current and benchmark datasets with WAV files, 
which do not accurately reflect the codec-specific conditions of real-life 
DSD applications.

In speech-relevant tasks such as speaker recognition, speaker emo-
tion detection, etc., some distortion data augmentations of Mixup [188] 
or SpecAugment [189], which are inspired from the computer vision 
domain, are widely used. These data augmentation methods focus 
on synthesizing new spectrograms in various manners (e.g., merging, 
masking), which might not accurately reflect artifacts of the audio 
signal. Additionally, these data augmentation methods are applied to 
batches of spectrograms, referred to as online data augmentation. As 
shown in Fig.  6, Mixup [188] or SpecAugment [189] are also used 
in a wide range of DSD systems. However, none of the papers has 
analyzed or compared the efficiency between offline data augmentation 
and online data augmentation.

Conclusion: Given the analysis and the existing concerns above, we 
can conclude that although a wide range of data augmentation methods 
are used, the contribution of each method has not been comprehen-
sively analyzed. Therefore, to evaluate the role and the effect of the 
online and offline data augmentation methods, we conducted extensive 
experiments in this paper. Based on our findings, we highlight data 
augmentation strategies that are most compatible with DSD systems. In 
particular, we compare the performance of codec-based methods with 
the Mixup [188] and SpecAugment [189]. On our GitHub repository, 
we regularly update codec-based methods and other data augmentation 
techniques featured in the latest research.

4.2. Feature extraction

Analysis: As shown in Fig.  4, feature extraction methods can be cat-
egorized into two main groups: non-parameter and trainable-parameter 
methods. In non-parameter feature extraction, a raw audio utterance 
(e.g., a 1-D tensor) is first transformed into a time-frequency spec-
tral features (e.g., a 2-D tensor) using various transformation ranging 
from spectral coefficients (e.g., MFCC [125,190], LFCC [128,160,179], 
CQCC [126], etc.) to spectrogram-based representations such as STFT-
spectrogram [131,170], CQT-spectrogram [126,129], etc. Once the 
time-frequency spectrograms are generated, some DSD systems directly 
use them for training with classification models [129], while other sys-
tems use several approaches to enhance feature quality before applying 
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a classification model. The first approach involves applying auditory 
filter banks such as Mel [144,157], Linear Filter [125,132,159] (LF), 
etc, to capture the relationships between frequency bands. Then a 
Discrete Cosine Transform (DCT) is applied to analyze the relationship 
across temporal dimension before the features are fed into a model for 
the training process [125,132,157,159]. Notably, the output of Mel, 
LF, or DCT operations remains a 2-D tensor (similar to a spectrogram), 
representing both temporal and spectral features.

In the second approach, audio inputs are fed into pre-trained 
models, such as XLS-R [191], Hubert [139], WavLM [148], or Whis-
per [149], to extract embeddings. These embeddings can be the outputs 
feature maps from specific layers of these pre-trained model [144]. 
Typically, the embeddings form a 1-D tensor, similar to a vector, where 
each dimension of the vector is treated as an independent value.

In general, non-parameter feature extraction leverages various spec-
trogram transformations, auditory filters, auditory statistics, and pre-
trained models to generate distinct features (e.g., 1-D audio embed-
dings, 2-D spectrograms) of audio input.

Trainable-parameter feature extraction involves extracting audio 
features by applying trainable network layers. In particular, systems 
proposed in [127,130,144] applied SincNet layers [192], LEAF lay-
ers [193], FBanks [167] to learn and extract features from raw audio. 
These techniques construct learnable filterbanks or approximate the 
standard filtering process. For example, SincNet and LEAF layers keep 
the role of adaptive and bandpass filters to capture frequency features 
between two pre-defined cut-off frequencies. The outputs of these 
trainable layers are the feature maps that are then fed into the next 
parts of detection systems. In other words, trainable feature extraction 
includes trainable network layers as a part of entire network architec-
tures that directly train and learn features from raw audio without the 
spectrogram transformation steps.

Discussion: By allowing learnable temporal-spatial features during 
the training process, trainable-parameter feature extraction is compat-
ible with end-to-end systems and shows effectiveness in distinguishing 
artifacts in fake speech. However, as most proposed systems using 
trainable features were evaluated on single datasets rather than cross-
dataset settings, this possibly leads to challenges in generalization since 
learned feature sets perform well under specific conditions but fail 
in unseen fake speech in real-world environments. Regarding feature 
extraction using audio embeddings from pre-trained models, although 
these pre-trained models are effective for many audio tasks, using 
them for deepfake detection presents several challenges. Firstly, as 
pre-trained models are initially trained for upstream tasks such as 
speech-to-text, speaker identification, emotion detection, etc, that fo-
cus on different aspects (i.e., speech-to-text or emotion detection), 
the audio melody and harmony (i.e., emotion detection), or distinct 
frequencies (i.e., speaker identification), embeddings can fail to cap-
ture subtle artifacts specific to synthesized speech. Secondly, audio 
deepfakes are generated to closely mimic real speech, they often have 
the same formants, pitch, and rhythm as real audio, especially when 
generated by advanced deep-learning-based speech generation systems. 
Additionally, the use of pre-trained models can add complexity due to 
their large network architectures.

For systems using spectrograms such as CQT, MEL, GAM, etc., each 
spectrogram is designed to capture specific frequency ranges. These 
spectrograms focus on different central frequencies, which allows them 
to highlight distinct features of an audio signal. However, human 
speech contains a wide range of formants - characteristics of sound 
determined by factors such as language, accent, vocal tract shape, and 
vocal fold behavior. Therefore, relying on only one type of spectrogram 
may miss important features, leading to incomplete or insufficient 
representations of the speech signal that are useful for deepfake de-
tection. To address this, DSD systems have begun to use ensembles 
of multiple spectrogram inputs [125,126,128,131,157]. By leveraging 
the unique strengths of each spectrogram type, this approach aims to 
enhance detection accuracy and has shown significant improvements 
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Fig. 7. The statistics of ensemble methods obtained from Tables  5, 6, 7.

in model performance. Many top-performing systems in recent com-
petitions have demonstrated the effectiveness of using ensembles to 
boost overall system robustness. However, ensemble models present 
several limitations, including reduced interpretability, increased system 
complexity, and higher training costs.

Conclusion: We have presented the commonly used feature ex-
traction methods in DSD systems, highlighting their characteristics 
and potential challenges associated with each approach. In the next 
section, we conduct extensive experiments of various feature extraction 
methods to evaluate the most effective approach for the DSD task. 
Additionally, we explore different feature ensembles to determine the 
optimal combinations for enhancing performance.

4.3. Classification models

Analysis: Early models proposed for DSD task approached conven-
tional machine learning algorithms. For example, 9 over 16 submitted 
systems in ASVspoofing 2015 challenge [190] extract MFCC feature 
(i.e. Systems A, B, E, G, H, I, N, O, and P in [190]). Then, various 
machine learning-based models such as Mahalanobis distance measure-
ment, Gaussian-based model (GMM), Support vector machine-based 
models (SVM, SVM-RBF), or fusion models (GMM and SVM) are used 
to explore MFCC features. Due to the emergence of powerful of deep 
learning techniques, a wide range of deep neural architectures have 
been applied to recent DSD systems, as as shown in Tables  5, 6, 7. 
Recently proposed deep neural networks for the DSD task can be 
separated into four main approaches. The first approach leverages 
convolutional-based network architectures (CNNs), which focuses on 
exploring spatial features. Among the CNN-based networks, Resnet, 
LCNN, and RawNet architectures are widely used. ResNet and LCNN 
are used to explore spectrogram-based features such as LFCC [126], 
CQT [131], and MEL [144]. Meanwhile, RawNet architectures are 
normally combined with SincNet layer [192] to learn raw audio [125,
126,128,129,132,144]. The second approach applies temporal neural 
network, such as recurrent neural network (RNN) based architectures, 
which focuses on exploring the temporal features. For example, LSTM-
based networks, TDNN, or ECAPA-TDNN are proposed in [125,128,
129,157,167], respectively. As shown in Tables  5, 6, 7, RNN-based 
networks have not been popularly applied for the DSD task com-
pared to the CNN-based architectures. The third approach involves 
combining both convolutional and temporal network architectures to 
explore audio features, referred to as hybrid network architectures. 
In particular, recurrent network-based layers such as LSTM, GRU are 
combined with CNN-based layers to perform convolutional-recurrent 
neural network (CRNN) architectures [125,164,167]. The fourth ap-
proach utilizes encoder–decoder-based network architectures, which 
have been widely used for the DSD task and have demonstrated their 
11 
effectiveness. Apart from the conventional encoder and decoder in 
transformer-based architectures [170,172], various alternative network 
architectures have been explored. For instance, encoders based on 
XLSR-53 [171], WavLM [150], CNN, and ResNet [168] have been 
investigated as replacements. Regarding decoder architectures, numer-
ous approaches such as GAN-based architectures [168], multi-feature 
attention [150], and Graph Attention Networks [130,133,134], etc, 
have been leveraged.

To further enhance the DSD performance, the DSD research com-
munity leverages a wide range of ensemble models. These ensemble 
models can be separated into three main approaches which are marked 
in the final column in Table  7. In the first approach (Multiple inputs), 
multiple input features are explored [137,170,173,194]. This approach 
is inspired by the idea that multiple features contain different and 
distinct features between fake and real utterances. Given different fea-
tures, each feature is trained by the same classification model (i.e., the 
individual model shares the same network architecture but presents 
different training parameters after the training process). For exam-
ple, while [170] explores the magnitude and phase features of STFT 
spectrogram, different features of Wav2Vec embeddings, duration, and 
pronunciation are explored in [137]. Similarly, multiple spectrograms 
such as LFCC, CQT, and STFT are trained by one classification model 
of CNN [195]. Finally, the scores obtained from individual models 
are fused to achieve the final and best result. The second approach 
(Multiple branches or models) leverages different network architectures 
that explore one type of input feature [157,160,174,176,177,180–182,
184]. This approach is inspired by the idea that different network 
architectures are likely to capture distinct properties from the input 
feature. For example, [176] proposed multiple branches of GMM-DNN 
and ResNet to explore the LFCC spectrogram. Similarly, [157] explores 
the raw audio by different variants of ECAPA-TDNN. The final approach 
(Multiple inputs, models) leverages both multiple input features and 
different network architectures. For example, [125] explore raw audio 
by RawNet2. Meanwhile, TDNN and LFCC spectrogram are explored 
by LCNN. Then, the authors fused three results obtained from three 
individual models. Similarly, multiple input features of raw audio, 
CQCC, and LFCC are explored by different models of LCNN, GMM, 
and RawNet2 in [126]. Ensemble methods are widely adopted in many 
top-performing systems in DSD challenge competitions.

Discussion: Although many deep neural network architectures have 
been proposed for the DSD task and evaluated on various benchmark 
datasets, the best results have been obtained from ensemble meth-
ods with multiple inputs or/and different network architectures. The 
statistics of ensemble models, as shown in Fig.  7, indicate that multi-
ple branches or models are the majority. However, ensemble models 
present the concern of large trainable parameters. Moreover, none of 
the research has been analyzed to indicate the individual roles of input 
features or types of network architectures used in ensemble meth-
ods. To demonstrate a robust and general DSD model, the proposed 
model needs to be evaluated with multiple datasets, cross-datasets, or 
cross-languages. However, only some recent research [39,143,151,171] 
evaluated the proposed models with multiple datasets such as ASVspoof 
2019 (LA Task), ASVspoof 2021 (LA&DF Task), In The Wild, etc. To 
the best of our knowledge, none of the research has proposed the 
evaluation on cross-languages.

Conclusion Given the analysis of feature extraction and classi-
fication models above, it can be seen that a wide range of input 
features have been explored by various classification models. However, 
none of the papers has made effort to compare different approaches, 
indicating the potential research directions. Therefore, in this paper, 
we conduct extensive experiments with various input features, indi-
cating the effective input feature for DSD system performance. We 
also evaluate a wide range of network architectures leveraging the 
transfer learning technique, end-to-end training approach, and audio 
embeddings extracted from state-of-the-art pre-trained models. Given 
extensive experiments on different input features and various network 
architectures, we propose an ensemble model that is competitive to 
state-of-the-art DSD systems.
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Fig. 8. The statistics of loss functions obtained from Tables  5, 6, 7.

4.4. Loss function and training strategy

From Tables  5, 6, 7, it can be seen that most proposed models use 
a single loss function. Statistics of the individual loss functions are 
also presented in Fig.  8. As shown in Fig.  8, the cross entropy (CE) 
based losses (e.g., Binary Cross Entropy (BCE), Weight Cross Entropy 
(WCE), etc.) and Softmax-based losses (e.g., Additive-Margin-Based 
Softmax (AM-Softmax), Angular-Margin-Based Softmax (A-Softmax), 
etc.) present the most popular loss functions. Some models combine 
different loss functions. For example, CE and Contrastive loss were 
used in [168]. Similarly, authors in [164] combined three loss func-
tions of Cross Entropy, Triplet loss, and Adversarial loss. Some papers 
such as [158,159] compared the DSD performance between large mar-
gin cosine loss (LMC loss), and A-Softmax loss functions or between 
OC-Softmax, MSE for P2SGrad loss functions, respectively.

Generally, a single loss function is used in end-to-end based systems. 
Meanwhile, the combination of multiple loss functions is related to 
different training strategies. For example, [171] proposed a teacher-
student scheme in which the teacher was trained with contrastive loss 
and the student was trained by a combination of contrastive loss, Cross 
Entropy, and MSE loss. Similarly, the student network in [166,196] 
was trained by a combination of Cosine Similarity/OC-Softmax and 
MSE loss functions. It can be seen that muliple-loss functions used 
for teacher-student schemes help achieve a low-complexity model for 
the DSD task [166,171,196]. Additionally, using multiple-loss function 
in [141] aims for multiple-task learning strategy. Rather than focusing 
on loss functions, some researchers improve the DSD system by ex-
ploring the training strategy [197–199]. For example, authors in [197] 
suggested to mix three datasets for the training process. This enhances 
the generalization and stabilization of the authors’ proposed DSD sys-
tem. Meanwhile, authors in [198] generated more fake utterances by 
leveraging four types of Vocoders: HiFiGAN, MB-MelGAN, PWG, and 
WaveGlow, which helps to improve their DSD system performance.

5. Our proposed deepfake speech detection system and extensive 
evaluation

5.1. Our motivation

Given the comprehensive analysis of the DSD systems in Section 4, 
we are motivated to conduct extensive experiments that address and 
evaluate the main concerns below.

• We evaluate the role of offline data augmentation (codec) and 
compare this method with the conventional online data aug-
mentation methods of Mixup [188] and SpecAugment [189]. We 
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also indicate whether a combination of offline and online data 
augmentation methods is effective in enhancing the DSD system 
performance.

• We conduct extensive experiments to evaluate different inputs 
and network architectures. Given the comparison, we indicate 
which input features, network architectures, combination of in-
put features, and network architectures have the potential to be 
further explored. We then propose the best DSD ensemble system 
that is competitive to the state-of-the-art systems.

• To deeply analyze the role of data augmentation methods, input 
features, and network architectures, we evaluated proposed DSD 
systems within cross-dataset and cross-language settings.

• To address the real-time ability, our proposed models are evalu-
ated on two-second utterances and present low-complexity archi-
tectures.

5.2. Selected datasets and evaluating metrics

As the trade-off among the number of utterances, the deep-learning-
based fake speech generation systems, the original/real human speech 
resource as shown in Fig.  5 and the comprehensive analysis in Sec-
tion 3, we decide to use ASVspoof 2019 (LA Task) to evaluate the 
effect of data augmentations, different types of input features, and 
various network architectures. Given the results on ASVspoof 2019 (LA 
Task), we obtain the best DSD systems which are then evaluated with 
ASVspoof 2021 (LA & DF Tasks) datasets for cross-dataset evaluation 
and with MLAAD dataset for cross-language evaluation.

We obey the ASVspoof 2019 (LA Task) and ASVspoof 2021 (LA & 
DF Tasks) challenges, then use the Equal Error Rate (ERR) as the main 
metric for evaluating proposed models. We also report the Accuracy, 
F1 score, and AUC score to compare the performance among evaluating 
models.

5.3. Proposed systems and experimental settings

Data augmentations: We evaluate the role of two data augmen-
tation methods: offline data augmentation (codecs) and online data 
augmentation (Mixup and SpecAugment). Regarding offline data aug-
mentation using codec-based methods, we use six popular codec for-
mats MP3, OPUS, OGG, GSM, G722, and M4 A. While the codec-based 
methods compress and decompress raw audio before the training pro-
cess, the online data augmentation methods of Mixup and SpecAugment 
work on batches of spectrograms during the training process. By evalu-
ating these two groups of data augmentation individually, we indicate 
if each of them presents a significant contribution and a combina-
tion of two data augmentation methods can help enhance DSD task 
performance.

Multiple input features: Fig.  9 presents seven types of input fea-
tures: raw audio and six different spectrograms, which are evaluated 
in this paper. In particular, we use three transformation methods of 
Short-time Fourier Transform (STFT), Constant-Q Transform (CQT), 
and Wavelet Transform. Presumably, each type of spectrogram focuses 
on different perspectives on frequency content and might catch dif-
ferent inconsistencies in the audio signal. We then leverage different 
auditory-based filters: Mel and Gammatone filters focus on subtle vari-
ations relevant to human auditory perception and the linear filter (LF) 
isolates specific frequency bands.

As we set the window length, the hop length, and the filter number 
with 1024, 512, and 64, we achieve the same spectrogram shape of 
64 × 64. Then, we apply Discrete Cosine Transform (DCT) to spec-
trograms across the temporal dimension. Finally, the first and the 
second-order derivatives are applied to these spectrograms, generating 
a three-dimensional tensor of 64 × 64 × 3 (i.e., the original spectro-
gram, the first-order derivative, and the second-order derivative are 
concatenated across the third dimension).
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Fig. 9. Generate spectrograms using different spectrogram transformation methods and 
auditory filter models.

Table 8
The CNN, RNN, and C-RNN network architectures.
 Models Configuration  
 CNN-based model 3 × {Conv(32/64/128)-ReLU-AP-Dropout(0.2)} 
 1 × {Dense(256)-ReLU-Dropout(0.2)}  
 1 × {Dense(2)-Softmax}  
 RNN-based model 2 × {BiLSTM(128/64)-ReLU-Dropout(0.2)}  
 1 × {Dense(256)-ReLU-Dropout(0.2)}  
 1 × {Dense(2)-Softmax}  
 C-RNN-based model 3 × {Conv(32/64/128)-ReLU-AP-Dropout(0.2)} 
 2 × {BiLSTM(128/64)-ReLU-Dropout(0.2)}  
 1 × {Dense(256)-ReLU-Dropout(0.2)}  
 1 × {Dense(2)-Softmax}  

Table 9
The audio pre-trained models and the Multilayer Perceptron.
 Models Using License Embedding size/  
 configuration  
 Whisper [149] MIT 512  
 SpeechBrain [200] Apache2–0 192  
 SeamLess [201] MIT 1024  
 Pyannote [202,203] MIT 512  
 Wav2Vec2.0 [138] Apache2–0 1024  
 MLP Our proposal 1 × {Dense(128)-ReLU } 
 1 × {Dense(2)-Softmax } 

Back-end classification models: This paper proposes three main 
approaches for back-end classification models: the end-to-end deep 
learning approach, the transfer learning approach, and the audio-
embedding deep learning approach. Regarding the end-to-end deep 
learning approach, four models of CNN-based model, SinC-CNN model 
(e.g., SinC-CNN architecture is a combination of SinC layer and CNN 
architecture. The CNN architecture component is reused from CNN-
based model), CNN-based model, RNN-based model, and C-RNN-based 
model are evaluated with the detailed configuration in Table  8. The 
Sinc-CNN model proves powerful for raw audio input and has been 
widely used as the survey in Section 4. Meanwhile, CNN-based models 
are commonly used and effectively capture and learn spectral features. 
We also use RNNs to focus on detecting natural sequential patterns that 
can be disrupted in synthetic audio [204] (e.g., temporal coherence, 
prosodic features such as rhythm, stress, and intonation). Consequently, 
based on the idea of combining both spectral features and temporal 
features, we use C-RNN-based model to distinguish characteristics of 
real and fake audio utterances. With the transfer learning approach, 
various benchmark network architectures in the computer vision do-
main are evaluated, such as ResNet-18, MobileNet-V3, EfficientNet-B0, 
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DenseNet-121, SuffleNet-V2, Swint, Convnext-Tiny, GoogLeNet, MNAS-
net, RegNet, which were trained on the ImageNet1K dataset in ad-
vance [205]. Given the pre-trained networks, trainable weights, which 
capture rich and generalized features of pattern recognition in images, 
have the potential to adapt patterns in spectrograms by the fine-tuning 
process. To adapt the DSD task and inspired by [206], we re-use the 
backbone of the pre-trained models. We then connect the backbone 
with a dense layer to be compatible with the binary classification task. 
During the training process, both trainable parameters in the backbone 
and dense layer are updated with a low learning rate.

For the audio-embedding deep learning approach, different state-of-
the-art audio pre-trained models are evaluated. First, we evaluate the 
Whisper [149] model which was trained for speech-to-text task with 
multiple languages and supervised training strategy. We also evaluate 
Speechbrain [200] and Pyannote [202,203] which were proposed for 
speaker identification task. Finally, we evaluate Seamless [201] and 
Wav2vec2.0 [138] models which were trained for speech translation 
and speech-to-text tasks using self-supervised training strategy.

In particular, we feed the spectrogram inputs into these pre-trained 
models to obtain audio embeddings. Given the audio embeddings, we 
then propose a Multilayer Perceptron (MLP) to classify these audio 
embeddings into fake or real classes. The proposed MLP is shown in 
Table  9, to detect real or fake audio.

Ensemble method: As we train individual model works with two-
second audio segments, the result on an entire audio recording is 
computed by averaging of results over all these segments. Let consider 
𝒑(𝑛) = [𝑝(𝑛)1 , 𝑝(𝑛)2 ,… , 𝑝(𝑛)𝐶 ], where 𝐶 is the category number of the 𝑛th out 
of 𝑁 two-second segments, as the predicted probability of one two-
second segment. The predicted probability of an entire audio recording, 
as described by �̄� = [�̄�1, �̄�2,… , �̄�𝐶 ], is computed by: 

�̄�𝑐 =
1
𝑁

𝑁
∑

𝑛=1
𝑝(𝑛)𝑐 𝑓𝑜𝑟 1 ≤ 𝑐 ≤ 𝐶 (1)

Given the predicted probabilities from individual models, we pro-
pose a MEAN fusion for an ensemble of multiple models. Let consider 
the predicted probability of one model as �̂�𝑠 = (�̄�𝑠1 , �̄�𝑠2 ,… , �̄�𝑠𝐶 ), where 
𝐶 is the category number and the 𝑠th out of 𝑆 individual models. Next, 
the predicted probability after MEAN fusion (�̂�1, �̂�2,… , �̂�𝐶 ) is obtained 
by: 

𝑝𝑐 =
1
𝑆

𝑆
∑

𝑠=1
�̂�𝑠𝑐 𝑓𝑜𝑟 1 ≤ 𝑐 ≤ 𝐶 (2)

Finally, the predicted label �̂� for an entire audio sample is computed 
by: 
�̂� = argmax(�̂�1, �̂�2,… , �̂�𝐶 ) (3)

5.4. Experimental results and discussions

We first use ASVspoof 2019 (LA Task) to evaluate and indicate the 
best DSD systems. The comprehensive result comparison is described 
in Table  10.

Evaluation of data augmentation methods on ASVspoof 2019 
(LA Task): Considering the performance of online and offline data aug-
mentation methods as shown in systems A1 (no data augmentation), A2 
(online data augmentation with codec), A3 (offline data augmentation 
with Mixup and SpecAugment), and A4 (both online and offline data 
augmentation), it can be seen that the offline data augmentations of 
Mixup and SpecAugment are appropriate for DSD task on ASVspoof 
2019 (LA Task) dataset. Notably, the combination of online and offline 
data augmentations does not help enhance the DSD task performance 
compared with only using offline data augmentation.

Evaluation of input features on ASVspoof 2019 (LA Task): Con-
sidering the efficacy of raw audio and six types of spectrograms in 
systems from B1 to B7, STFT outperforms the raw audio and other 
spectrograms. Models B2, B5, and B7 achieve the best ERR score of 0.08 
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Table 10
Performance comparison among deep learning models on Logic Access evaluation subset in ASVspoofing 2019.
 Systems Inputs Augmentations Models Acc↑ F1↑ AUC↑ ERR ↓ 
 A1 STFT & LF None CNN 0.82 0.84 0.91 0.15  
 A2 STFT & LF Codec CNN 0.81 0.84 0.93 0.13  
 A3 STFT & LF Mixup, Spec. CNN 0.88 0.90 0.96 0.08  
 A4 STFT & LF Codec, Mixup, Spec. CNN 0.81 0.84 0.93 0.13  
 B1 Raw Audio None SinC-CNN 0.84 0.87 0.96 0.10  
 B2 STFT Mixup, Spec. CNN 0.87 0.89 0.96 0.08  
 B3 CQT Mixup, Spec. CNN 0.89 0.90 0.92 0.14  
 B4 WT Mixup, Spec. CNN 0.84 0.86 0.89 0.17  
 B5 STFT & LF Mixup, Spec. CNN 0.88 0.90 0.96 0.08  
 B6 STFT & MEL Mixup, Spec. CNN 0.86 0.88 0.95 0.11  
 B7 STFT & GAM Mixup, Spec. CNN 0.85 0.87 0.96 0.08  
 C1 STFT & LF Mixup, Spec. RNN 0.92 0.91 0.88 0.17  
 C2 STFT & LF Mixup, Spec. CRNN 0.88 0.90 0.96 0.14  
 D1 STFT & LF Mixup, Spec. ResNet-18 0.49 0.58 0.51 0.47  
 D2 STFT & LF Mixup, Spec. MobileNet-V3 0.59 0.67 0.52 0.48  
 D3 STFT & LF Mixup, Spec. EfficientNet-B0 0.52 0.61 0.51 0.48  
 D4 STFT & LF Mixup, Spec. DenseNet-121 0.58 0.66 0.51 0.48  
 D5 STFT & LF Mixup, Spec. ShuffleNet-V2 0.64 0.71 0.53 0.48  
 D6 STFT & LF Mixup, Spec. Swin_T 0.84 0.87 0.94 0.09  
 D7 STFT & LF Mixup, Spec. ConvNeXt-Tiny 0.88 0.90 0.96 0.075 
 D8 STFT & LF Mixup, Spec. GoogLeNet 0.53 0.62 0.51 0.47  
 D9 STFT & LF Mixup, Spec. MNASNet 0.62 0.70 0.54 0.47  
 D10 STFT & LF Mixup, Spec. RegNet 0.50 0.60 0.50 0.48  
 E1 Raw Audio None Whisper+MLP 0.85 0.88 0.95 0.10  
 E2 Raw Audio None Speechbrain+MLP 0.77 0.81 0.81 0.25  
 E3 Raw Audio None Seamless+MLP 0.86 0.88 0.87 0.20  
 E4 Raw Audio None Pyannote+MLP 0.64 0.71 0.78 0.27  
 E5 Raw Audio None Wav2Vec2.0+MLP 0.79 0.82 0.89 0.18  
 B2 + B3 STFT, CQT Mixup, Spec. CNN 0.91 0.92 0.98 0.06  
 B2 + B4 STFT, WT Mixup, Spec. CNN 0.88 0.90 0.96 0.09  
 B2 + B3 + B4 STFT, CQT, WT Mixup, Spec. CNN 0.90 0.92 0.98 0.07  
 B5 + B6 STFT&LF, STFT&MEL Mixup, Spec. CNN 0.88 0.90 0.97 0.08  
 B5 + B7 STFT&LF, STFT&GAM Mixup, Spec. CNN 0.87 0.89 0.98 0.065 
 B5 + B6 + B7 STFT& LF, STFT&MEL, STFT&GAM Mixup, Spec. CNN 0.88 0.90 0.98 0.069  
 B5 + D6 STFT&LF Mixup, Spec. CNN, Swint_T 0.87 0.89 0.96 0.078  
 B5 + D7 STFT&LF Mixup, Spec. CNN, ConvNeXt-Tiny 0.88 0.90 0.97 0.07  
 B5 + D6 + D7 STFT&LF Mixup, Spec. CNN, ConvNeXt-Tiny, Swint_T 0.88 0.89 0.97 0.072  
 B3 + B5 + B7 CQT, STFT&LF, STFT&GAM Mixup, Spec. CNN 0.88 0.90 0.98 0.05  
 D7 + E1 Raw Audio, STFT&LF Mixup, Spec. Whisper, ConvNeXt-Tiny 0.86 0.88 0.99 0.03  
 B5 + E1 Raw Audio, STFT&LF Mixup, Spec. Whisper, CNN 0.87 0.89 0.99 0.03  
while the combination of STFT & LF obtains slightly better accuracy and 
F1 scores of 0.88 and 0.9, respectively. This indicates that STFT and 
applying filters such as Linear Filter or Gammatone filter are suitable 
for isolating specific frequency bands in classification algorithms.

Evaluation of multiple deep learning approaches on ASV-spoof 
2019 (LA Task): Regarding the end-to-end deep learning approach 
from A1 to C2, CNN systems outperform RNN or C-RNN systems. 
Indeed, using the same input feature of STFT+LFCC, RNN and C-RNN 
approaches (C1 and C2 systems) obtain ERR scores of 0.14 and 0.17, 
which is significantly worse than CNN system (A3 or B2 or B7), with the 
best score of 0.08. This indicates that the specific patterns indicative of 
deepfake audio might not be primarily temporal but rather frequency in 
the spectrogram representation. Regarding the finetuning approach (D1 
to D10), Convnext-Tiny stands out as the best system with competitive 
EER score of 0.075. Meanwhile, the embedding-based approach (E1 to 
E5) achieves the best EER scores of 0.10 using the pre-trained Whisper 
model. This suggests the potential of these approaches when choosing 
the appropriate networks for further optimization.

Evaluation of ensemble methods on ASVspoof 2019 (LA Task):
Given the performance of individual input features and network archi-
tecture, we conduct extensive experiments to evaluate a wide range of 
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ensemble models. First, ensembles of STFT, CQT, and WT spectrograms 
are evaluated, indicating the best EER score of 0.06 from the com-
bination of STFT and CQT (B2+B3). Then, ensembles of spectrogram 
with different filter banks (MEL, LF, GAM) are also evaluated, resulting 
in the best score of 0.065 from STFT+LF and STFT+GAM (B5+B7). 
As a result, when an ensemble of CQT, STFT+LF, and STFT+GAM is 
conducted (B3+B5+B7), we can achieve the EER score of 0.05. Regard-
ing the ensemble of network architectures, CNN and ConvNeXt-Tiny 
(B5+D7) help obtain the EER score of 0.07. Meanwhile, the combina-
tion of Whisper+MLP, ConvNeXt-Tiny (D7+E1) or Whisper+MLP, CNN 
(B5+E1) achieves the best EER score of 0.03.

We continue evaluating cross-datasets on ASVspoof 2021 (LA & 
DF Tasks) [23] and cross-languages on MLAAD [18]. For the cross-
dataset evaluation, the evaluation sets of ASVspoof 2021 (LA & DF 
Tasks) [23] are tested with the DSD models which were trained and 
evaluated on ASVspoof 2019 (LA Task) in advance from Table  10. 
Regarding cross-language evaluation, we only select pairs of utterances 
from four languages (e.g., French, Spanish, Italian, and German). A pair 
of utterances presents the original utterance and a deepfake utterance 
with the same transcription. Similar to the cross-dataset evaluation, 
pre-trained DSD systems on ASVspoof 2019 (LA Task) from Table  10 
are used to verify the cross-language evaluation.
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Table 11
Performance comparison among deep learning models on ASVspoof 2021 (LA &DF Tasks) for cross-dataset evaluation.
 Systems Inputs Augmentations Models Dataset Acc↑ F1↑ AUC↑ ERR ↓ 
 B5 STFT & LF Codec CNN ASV21-LA 0.84 0.87 0.89 0.16  
 B5 STFT & LF Mixup, Spec. CNN ASV21-LA 0.88 0.88 0.79 0.27  
 B5 STFT & LF Codec & Mixup, Spec. CNN ASV21-LA 0.85 0.87 0.90 0.15  
 B5 STFT & LF Codec CNN ASV21-DF 0.88 0.91 0.80 0.27  
 B5 STFT & LF Mixup, Spec. CNN ASV21-DF 0.91 0.88 0.77 0.28  
 B5 STFT & LF Codec & Mixup, Spec. CNN ASV21-DF 0.91 0.93 0.80 0.25  
 B3 CQT Codec CNN ASV21-LA 0.76 0.80 0.81 0.23  
 B3 CQT Mixup, Spec. CNN ASV21-LA 0.73 0.78 0.79 0.26  
 B3 CQT Codec & Mixup, Spec. CNN ASV21-LA 0.78 0.82 0.82 0.22  
 B3 CQT Codec CNN ASV21-DF 0.71 0.80 0.76 0.29  
 B3 CQT Mixup, Spec. CNN ASV21-DF 0.68 0.78 0.74 0.31  
 B3 CQT Codec & Mixup, Spec. CNN ASV21-DF 0.71 0.80 0.77 0.28  
 B7 STFT&GAM Codec CNN ASV21-LA 0.81 0.84 0.86 0.19  
 B7 STFT&GAM Mixup, Spec. CNN ASV21-LA 0.78 0.82 0.85 0.21  
 B7 STFT&GAM Codec & Mixup, Spec. CNN ASV21-LA 0.80 0.84 0.85 0.19  
 B7 STFT&GAM Codec CNN ASV21-DF 0.72 0.81 0.79 0.27  
 B7 STFT&GAM Mixup, Spec. CNN ASV21-DF 0.73 0.81 0.80 0.27  
 B7 STFT&GAM Codec & Mixup, Spec. CNN ASV21-DF 0.74 0.82 0.80 0.26  
 D7 STFT & LF Mixup, Spec. ConvNeXt-Tiny ASV21-LA 0.88 0.88 0.73 0.33  
 E1 Raw Audio None Whisper ASV21-LA 0.84 0.86 0.88 0.18  
 D7 STFT & LF Mixup, Spec. ConvNeXt-Tiny ASV21-DF 0.93 0.94 0.76 0.32  
 E1 Raw Audio None Whisper ASV21-DF 0.84 0.89 0.92 0.14  
 B5 + E1 Raw Audio, STFT&LF Mixup, Spec. Whisper, CNN ASV21-LA 0.90 0.91 0.96 0.11  
 B5 + E1 Raw Audio, STFT&LF Mixup, Spec. Whisper, CNN ASV21-DF 0.94 0.95 0.95 0.13  
Evaluation of data augmentation methods for cross-data-set 
evaluation on ASVspoof 2021 (LA & DF Tasks): As experimental 
results on the B3, B5, and B7 systems are shown in Table  11, it 
indicates that using the data augmentation methods helps improve the 
DSD system performance on both ASVspoof 2021 LA and DF tasks. 
Significantly, codec shows more effectiveness rather than the online 
augmentation methods on the ASVspoof 2021 LA task. The results also 
indicate that a combination of offline data augmenation (e.g., codec) 
and online data augmentation (e.g., Mixup and SpecAugment) are 
necessary to achieve a general DSD model to deal with the domain shift 
issue in cross-data evaluation.

Evaluation of input features for cross-dataset evaluation on 
ASVspoof 2021 (LA & DF Tasks): Regarding the input features, three 
types of spectrograms (e.g., CQT, STFT+GAM, STFT+LF) which present 
the high performance on ASVspoof 2019 dataset are evaluated. In 
particular, STFT+LF (B5 system) outperforms CQT (B3 system) and 
STFT+GAM (B7 system). This indicates that a combination of STFT and 
linear filter is suitable for DSD task.

Evaluation of network architectures for the cross-dataset eval-
uation on ASVspoof 2021 (LA & DF Tasks): The experimental results 
from B5 (STFT+LF, CNN), D7 (STFT+LF, ConvNeXt-Tiny) and E1 (Raw 
Audio, Whisper+MLP) systems indicate that leveraging pre-trained 
model (E1) significantly outperforms the others. This again proves 
and explains why more Encoder-Decoder architectures have been re-
cently proposed for the DSD task (i.e., Encoder architectures leveraging 
pre-trained models such as Whisper or Wave2vec2.0). Regarding the 
ensemble methods, the combination of B5 and E1, which presents 
CNN-based architecture and pre-trained Whisper model, achieves the 
best performance on both ASVspoof 2019 (LA Task) and ASVspoof 
2021 (LA & DF Tasks). This also proves that the ensemble of network 
architectures is more effective than the ensemble of input features.

The results obtained from the evaluation on ASVspoof 2019 (LA 
Task) and ASVspoof 2021 (LA & DF Tasks) could lead to some con-
clusions:
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• The results indicate a combination of offline data augmentation 
(codec) and online data augmentation (Mixup, SpecAugment) is 
essential for constructing a general DSD system.

• Not all network architectures are appropriate for the DSD task. 
As the good performances obtained from CNN-based network, 
ConvNeXt-Tiny, Whisper models, it suggests that CNN-based and 
Encoder-Decoder architectures are suitable for DSD task.

• The ensemble of network architectures is effective in enhancing 
the model performance on the DSD task rather than the ensemble 
of spectrograms.

• Leveraging pre-trained models such as Whisper shows effective-
ness, reinforcing the growing trend of using Encoder-Decoder 
architectures with pre-trained Encoders. This explains why these 
architectures have gained popularity in recent works.

In the cross-language evaluation, as shown in Table  12, all pro-
posed DSD systems exhibit poor performance. This indicates that train-
ing a model on a single language (e.g., English) and testing it on 
other languages (e.g., French, German, Spanish, Italian) is not effec-
tive. To develop a robust DSD model for multiple languages, training 
with multilingual datasets is essential, highlighting the need for the 
DSD research community to focus on creating and publishing more 
multilingual datasets for the task.

6. Open challenges and potential research directions

6.1. Datasets for deepfake speech detection

6.1.1. Open challenges
Building better datasets for audio deepfake detection is essential for 

improving the accuracy and robustness of detection systems. However, 
the current diversity of available datasets for audio deepfake detection 
remains limited, especially in terms of speaker identity, language, and 
deepfake generation methods.

A large number of published datasets feature a narrow range of 
speaker identities, often focusing on a small group of speakers with 
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Table 12
Performance comparison among deep learning models on MLAAD dataset for cross-language evaluation.
 Systems Inputs Augmentations Models Dataset-Language Acc↑ F1↑ AUC↑ ERR ↓ 
 B5 STFT & LF Codec & Mixup, Spec. CNN MLAAD-DE 0.45 0.32 0.53 0.46  
 B5 STFT & LF Codec & Mixup, Spec. CNN MLAAD-IT 0.49 0.34 0.27 0.69  
 B5 STFT & LF Codec & Mixup, Spec. CNN MLAAD-FR 0.49 0.35 0.48 0.51  
 B5 STFT & LF Codec & Mixup, Spec. CNN MLAAD-ES 0.48 0.33 0.45 0.52  
 E1 Raw Audio None Whisper+MLP MLAAD-DE 0.53 0.52 0.56 0.45  
 E1 Raw Audio None Whisper+MLP MLAAD-IT 0.52 0.52 0.54 0.48  
 E1 Raw Audio None Whisper+MLP MLAAD-FR 0.59 0.57 0.62 0.40  
 E1 Raw Audio None Whisper+MLP MLAAD-ES 0.52 0.52 0.53 0.48  
 B5 + E1 Raw Audio, STFT & LF Codec & Mixup, Spec. CNN, Whisper+MLP MLAAD-DE 0.50 0.38 0.54 0.47  
 B5 + E1 Raw Audio, STFT & LF Codec & Mixup, Spec. CNN, Whisper+MLP MLAAD-IT 0.52 0.38 0.63 0.40  
 B5 + E1 Raw Audio, STFT & LF Codec & Mixup, Spec. CNN, Whisper+MLP MLAAD-FR 0.50 0.36 0.59 0.42  
 B5 + E1 Raw Audio, STFT & LF Codec & Mixup, Spec. CNN, Whisper+MLP MLAAD-ES 0.50 0.37 0.49 0.50  
limited gender, age, and accent diversity. For instance, datasets of 
ASVspoof and FakeAVCeleb include mainly English-speaking voices 
from certain groups of speakers (e.g., celebrity, predominantly syn-
thesized voice) with a small number of speakers from different lan-
guage backgrounds, resulting in biased models when applied to diverse 
populations.

Many existing datasets are domain-specific, focusing on particu-
lar types of audio or speakers. For example, FakeAVCeleb primarily 
includes celebrity interviews, while LibriSpeech focuses on read record-
ings. These datasets often have limited variability in terms of recording 
conditions, speaker interactions, and speech styles, making it difficult 
to generalize detection models to new domains or unseen environ-
ments, such as detecting deepfakes in real-world scenarios with noisy 
or degraded audio, such as phone calls, public spaces, or online content.

The lack of language diversity is also a significant issue that limits 
the robustness of detection models. As shown at Table  3, most existing 
datasets support single languages (primarily English or Chinese). This 
imbalance raises challenges that hinder the development of robust, 
audio deepfake detection systems in multilingual settings.

As deepfake generation techniques have been evolving rapidly, they 
produce fake audio that is increasingly difficult to detect. This makes it 
difficult for existing datasets to stay up to date as they may be vulner-
able to newer methods of audio synthesis. Therefore, datasets must be 
continuously updated to include samples produced by new techniques 
to ensure the robustness and adaptability of detection models.

6.1.2. Future directions
Given the open challenges discussed in the previous subsection, we 

highlight some potential future directions in dataset development for 
Deepfake Speech Detection:

Multilingual and Multimodal Datasets: To address the issue of 
language diversity, future datasets should include a broader range of 
languages, accents, and dialects. This variety will enable detection 
models to better handle diverse linguistic and phonetic features across 
different languages, ensuring their stability in multilingual contexts and 
their effectiveness in developing global solutions. Moreover, deepfake 
content in real-world scenarios often includes both audio and video 
elements, rather than just audio. Therefore, integrating multimodal 
datasets that combine both audio and video deepfakes is a crucial 
direction for future research. This integration enhances detection ca-
pabilities by allowing models to identify anomalies across multiple 
data types, improving their effectiveness in combating increasingly 
sophisticated forgeries

Continuous Dataset Updates: To stay updated, there needs to be 
ongoing collaboration between researchers developing deepfake gener-
ation methods and those working on the DSD task. Regular updates 
to datasets should include deepfake samples created by the latest 
synthesized generation techniques, allowing detection models to adapt 
to emerging threats.
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Cross-Domain and Real-World Dataset Adaptation: One of the 
biggest challenges for DSD models is domain adaptation — the ability 
to generalize across different types of audio environments, speakers, 
and use cases. Future datasets should prioritize cross-domain gen-
eralization, including diverse data from various contexts (e.g., pod-
casts, phone calls, interviews, public speeches, and social media con-
tent). In addition, besides varied deepfake generation methods, future 
dataset development should include data from diverse online platforms 
(e.g., YouTube, TikTok, podcasts) and various speaker demographics 
that stimulate inclusive real-life scenarios.

6.2. The generalization and robustness of deepfake speech detection models

6.2.1. Open challenges
A major challenge in developing deepfake detection systems is en-

suring they can generalize to new samples that are not presented in the 
training data. While models may perform well on known attacks, they 
often struggle with novel manipulations and across different domains, 
such as varying languages, accents, or speaking styles. The limited size 
and diversity of training datasets hinder DSD models’ ability to handle 
real-world variability without degraded performance. Some approaches 
have been adopted to address these challenges. For example, ensemble 
models, as discussed in Sections 2 and 4, have been effectively utilized 
to enhance DSD performance and generalization ability, often achieving 
top results in competition settings. They are also frequently employed 
in research papers to deliver competitive outcomes [126,128,144]. 
While ensemble models are powerful and versatile, they often require 
significant computational costs during training. Additionally, detection 
systems leveraging pre-trained models have gained popularity [171]. 
By fine-tuning models pre-trained on upstream audio tasks like speech-
to-text [138,149], the training cost for DSD downstream tasks is greatly 
reduced. However, proving the generalization of these fine-tuned single 
models remains challenging. For instance, experiments on ASVspoof 
2021 (DF Task) in [171] achieved remarkable results, with an EER 
of 5.67 compared to 15.64 from the top-performing system in the 
challenge. In contrast, the performance on the ASVspoof 2021 (LA 
Task) was much lower, with an EER of 15.92, compared to 1.32 from 
the top-performing system.

In terms of improving the model’s robustness to adversarial at-
tacks, the majority of current methods for defending against adversarial 
attacks rely on adversarial training [9], which involves generating ad-
versarial examples from known attacks to retrain the model. However, 
this approach incurs high computational costs.

6.2.2. Future directions
To improve the generalization and robustness of detection systems, 

there has been much room for improving existing approaches as well 
as proposing new methods. For example, future directions can address 
challenges in ensemble methods by balancing the trade-off between 



L. Pham et al. Computer Science Review 57 (2025) 100757 
cost and effectiveness using techniques such as pruning, quantization, 
and knowledge distillation or other efficient ensembling strategies to 
reduce model size. In the approach using transfer learning or fine-
tuning, employing several strategies such as cross-dataset validation 
or an ensemble of fine-tuned models could address the challenges 
of proving generalization. Applying mechanisms to learn information 
from domain-invariant attacks could also enhance the robustness of 
models against different adversarial attacks.

6.3. Interpretability and explainable AI (XAI) for deepfake speech detection

6.3.1. Open challenges
Improving interpretability and explainability in Deepfake Speech 

Detection remains a complex task due to the unique challenges posed 
by audio data and the black-box nature of deep learning methods. 
Although various explainable AI (XAI) techniques prove effectiveness in 
interpreting deep-learning-based models, applying XAI to DSD systems 
has not drawn much attention from the research community. Indeed, 
only some recently published papers [207–211] address the role of XAI, 
which mainly focus on the visualization-based XAI methods. For exam-
ple, the conventional SHapley Additive exPlanations (SHAP) [212] and 
Local Interpretable Model-agnostic Explanations (LIME) [213] meth-
ods were used to interpret the feature contribution in [208,210] and 
in [209], respectively. Authors in [207] applied Saliency Map [214] 
and Smooth Grad [215] techniques to visualize how their model pro-
cesses audio in the frequency domain. Similarly, layer-wise relevance 
propagation (LRP), a visualization-based XAI method, was leveraged 
in [211] to indicate the difference of formants among fake and real 
audio utterances. While more deep-learning-based models have been 
proposed to solve the DSD task, not many research papers focus on 
exploring XAI methods to interpret DSD systems.

6.3.2. Future directions
Based on the above discussion, there is much room for applying 

XAI to improve transparency and trustworthiness within detection sys-
tems. Additionally, leveraging visualization tools for visualizing audio 
features or feature maps could also provide user-friendly platforms 
and valuable insights into the underlying decision-making process of 
detection models.

6.4. Real-time deepfake speech detection

6.4.1. Open challenges
Integrating DSD systems into real-world applications still presents 

several challenges. Key factors include the length of the audio ut-
terance, the complexity of the model (e.g., the number of trainable 
parameters), computational costs (e.g., FLOPs), and the target edge de-
vices (e.g., mobile phones, embedded systems, high-performance com-
puters). These factors directly affect inference time and are carefully 
analyzed to ensure effective implementation. For example, the trade-off 
between the performance and the model complexity was comprehen-
sively analyzed in [195,216] concerning Acoustic Scene Classification 
(ASC) task and Acoustic Event Detection (AED) task, respectively. 
Currently, most proposed DSD systems have been currently evaluated 
on high-performance computers with the advance of powerful GPUs 
without any computational constraints, while there is little research on 
real-time deepfake detection. Several studies, such as [217,218], have 
proposed real-time deepfake audio detection systems. However, these 
systems often face significant limitations, such as being applicable to 
only a limited range of deepfake creation techniques (voice conversion) 
or domains (communication). These challenges highlight the need for 
further exploration and analysis of real-time DSD systems in future 
research.
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6.4.2. Future directions
Future directions in developing real-time audio deepfake detection 

systems could rely on better handling the trade-off between model 
complexity and performance, facilitating model implementation in low-
latency conditions. Some techniques such as quantization and pruning 
can be used to reduce model size, while other methods leverage edge 
computing or distributed computing to reduce inference time and 
handle large-scale data more efficiently.

6.5. Ethical and legal considerations

6.5.1. Open challenges
Training audio deepfake detection models requires large datasets, 

which may involve the collection and the use of personal voice record-
ings. For example, VoxCeleb and FakeAV-Celeb corpora contain speech 
from thousands of celebrities in various environments. Personal data 
handling raises threats of privacy and consent. Furthermore, there is 
also a risk of dual-use dilemma when some bad actors could manipulate 
detection technology and available individuals’s speech for harmful 
purposes such as reinforcing disinformation narratives, defamation, and 
fraud, infringing on individuals’ privacy rights.

6.5.2. Future directions
Future directions in addressing ethical and legal considerations for 

developing audio deepfake technologies focus on enhancing data pri-
vacy protection, fairness, and facilitating global regulatory frameworks. 
Developers will increasingly incorporate privacy-by-design principles in 
developing detection systems, ensuring that personal voice data is han-
dled securely and with consent, minimizing the risk of misuse. Within 
DSD applications, access control mechanisms should be implemented 
to limit certain groups of people and the frequency of using detection 
technologies, reducing the potential risk of misuse by malicious actors. 
In terms of legal perspectives, legal frameworks may also evolve to 
introduce stricter penalties for misuse of both deepfake creation and 
detection technology.

6.6. The race between deepfake speech generation and detection

6.6.1. Open challenges
As mentioned and discussed in Section 3, there is a tight rela-

tionship between Deepfake Speech Generation and Deepfake Speech 
Detection tasks. Deepfake Speech Generation systems (e.g., VC, TTS, 
and AT models) have been becoming more powerful and accessible, 
enabling the creation of hyper-realistic fake utterances that mimic nor-
mal speech patterns and produce fewer detectable flaws. This makes it 
hard for DSD systems to distinguish between real and manipulated con-
tent, presenting challenges to keep pace with these deepfake creation 
advancements.

6.6.2. Future directions
As deepfakes have evolved rapidly, detection models must also 

adapt by learning from increasingly realistic fakes. By facilitating col-
laborative environments, researchers in both Deepfake Speech Genera-
tion and Detection can further explore and push boundaries of what is 
technically possible and ensure that detection methods keep pace with 
advances in deepfake generators. For example, ADD 2022 [17], ADD 
2023 [24], and ASVspoof 2024 [27] challenge competitions were estab-
lished to engage researchers in both Deepfake Speech Generation and 
Detection. This promotes innovations in addressing the race between 
creating and detecting deepfake, improving the robustness of detection 
systems in combating increasingly complicated deepfakes.



L. Pham et al. Computer Science Review 57 (2025) 100757 
6.7. Feature-free deepfake detection

6.7.1. Open challenges
Deepfake detection faces the usual challenge of the cat-mouse logic 

of an attack-defense arms race, which is due to the fact that as soon as 
a feature is identified for detection, it can as quickly be neutralized in 
the next generation synthesis models. The only way to break this cycle 
is to develop feature-free detection approaches, which designed sys-
tems remain effective against an ever-changing landscape of synthesis 
techniques, where adaptability and foresight are as critical as accuracy.

6.7.2. Future directions
To develop robust and feature-free deepfake detection approaches, 

two promising directions can be further explore are leveraging self-
supervised models [219,220], which features capturing invariant and 
high-level features across different types of genuine speech, making 
them less reliant on artifacts, and using continual learning [221,222], 
which help remain model’s robustness against new emerging attack 
types. Additionally, another potential method is using the very same 
synthesis technologies used to produce deepfakes for their own detec-
tion. The idea is based on the intuition that an AI model can reproduce 
speech produced by an AI more easily than by a human, because reality 
is always more complex than its model. In other words, real speech 
contains chaotic components that will not be perfectly captured by AI 
models. The proposed method consists of the training and detection 
phases. The training phase uses an advanced neural voice cloning 
system to synthesize voice samples based on the target speech files 
whose authenticity needs to be verified, and then computes a similarity 
metric between the target speech (authentic or synthetic) and the 
cloned speech. This distance distribution is used to find the optimal 
classification threshold, which is then applied to compute the likelihood 
of authenticity during the detection phase.

6.8. The availability of deepfake speech detection tools

6.8.1. Open challenges
Deepfake speech detection tools still face challenges in increasing 

their quantity and quality due to the rapid development of deepfake 
speech generation techniques. Although DSD systems act as a critical 
function in Voice over Internet Protocol (VoIP) based platforms such 
as WhatsApp, Facebook, etc. or social media such as YouTube, Twister, 
etc. for a thread warning, very few VoIP platforms or social media have 
announced an available and independent DSD tool. Regarding non-
commercial or commercial solutions, only some DSD tools or platforms 
such as Deepware, WeVerify, TrueMedia, and DeepFake-O-Meter are 
available as highlighted in the survey [223]. However, information on 
DSD models used in these tools has been not described in detail except 
TrueMeida and DeepFake-O-Meter with 3 and 5 systems replicated 
from published papers. Overall, the sufficiency of deepfake detection 
applications is primarily due to technical complexity in developing and 
updating models, resource demands such as computational costs and 
scalability, accuracy concerns, and privacy issues.

6.8.2. Future directions
To address the mentioned challenges, future improvements in devel-

oping deepfake speech detection tools could rely on some approaches 
such as lightweight detection models that can operate on consumer de-
vices such as smartphones, laptops, or cloud-based services. To ensure 
broader adaption, the development of open-source deepfake detection 
tools or libraries and established standards for their use could also be 
promoted by the collaboration between tech companies and academic 
institutions, making detection tools more accessible and reliable.
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7. Conclusion

This paper has provided a comprehensive survey for Deepfake 
Speech Detection (DSD) task by deeply analyzing the challenge com-
petitions, the public and benchmark datasets, the main components in 
a deep-learning-based DSD system. From the survey, we indicate exit-
ing concerns and provide enhance solutions to motivate the research 
community for further contribution on this research topic. More than 
a survey, we verified the role and the effect of data augmentation, 
feature extraction, and network architectures. Given the comprehensive 
survey and extensive experiments, we indicate potential and promising 
research directions for Deepfake Speech Detection task.
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